!2260 Move googlenet to ModelZoo, fix warning and change googlenet's directory

Merge pull request !2260 from liyanliu96/liyan
pull/2260/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 7f891f62e5

@ -1,106 +0,0 @@
# Googlenet Example
## Description
This example is for Googlenet model training and evaluation.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the CIFAR-10 binary version dataset.
> Unzip the CIFAR-10 dataset to any path you want and the folder structure should be as follows:
> ```
> .
> ├── cifar-10-batches-bin # train dataset
> └── cifar-10-verify-bin # infer dataset
> ```
## Running the Example
### Training
```
python train.py --data_path=your_data_path --device_id=6 > out.train.log 2>&1 &
```
The python command above will run in the background, you can view the results through the file `out.train.log`.
After training, you'll get some checkpoint files under the script folder by default.
You will get the loss value as following:
```
# grep "loss is " out.train.log
epoch: 1 step: 390, loss is 1.4842823
epcoh: 2 step: 390, loss is 1.0897788
...
```
### Evaluation
```
python eval.py --data_path=your_data_path --device_id=6 --checkpoint_path=./train_googlenet_cifar10-125-390.ckpt > out.eval.log 2>&1 &
```
The above python command will run in the background, you can view the results through the file `out.eval.log`.
You will get the accuracy as following:
```
# grep "result: " out.eval.log
result: {'acc': 0.934}
```
### Distribute Training
```
sh run_distribute_train.sh rank_table.json your_data_path
```
The above shell script will run distribute training in the background, you can view the results through the file `train_parallel[X]/log`.
You will get the loss value as following:
```
# grep "result: " train_parallel*/log
train_parallel0/log:epoch: 1 step: 48, loss is 1.4302931
train_parallel0/log:epcoh: 2 step: 48, loss is 1.4023874
...
train_parallel1/log:epoch: 1 step: 48, loss is 1.3458025
train_parallel1/log:epcoh: 2 step: 48, loss is 1.3729336
...
...
```
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
## Usage:
### Training
```
usage: train.py [--device_target TARGET][--data_path DATA_PATH]
[--device_id DEVICE_ID]
parameters/options:
--device_target the training backend type, default is Ascend.
--data_path the storage path of dataset
--device_id the device which used to train model.
```
### Evaluation
```
usage: eval.py [--device_target TARGET][--data_path DATA_PATH]
[--device_id DEVICE_ID][--checkpoint_path CKPT_PATH]
parameters/options:
--device_target the evaluation backend type, default is Ascend.
--data_path the storage path of datasetd
--device_id the device which used to evaluate model.
--checkpoint_path the checkpoint file path used to evaluate model.
```
### Distribute Training
```
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]
parameters/options:
MINDSPORE_HCCL_CONFIG_PATH HCCL configuration file path.
DATA_PATH the storage path of dataset.
```

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -14,42 +14,32 @@
# ============================================================================
"""
##############test googlenet example on cifar10#################
python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
python eval.py
"""
import argparse
import mindspore.nn as nn
from mindspore import context
from mindspore.model_zoo.googlenet import GooGLeNet
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import dataset
from config import cifar_cfg as cfg
from src.config import cifar_cfg as cfg
from src.dataset import create_dataset
from src.googlenet import GoogleNet
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Cifar10 classification')
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.')
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
context.set_context(device_id=args_opt.device_id)
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
context.set_context(device_id=cfg.device_id)
net = GooGLeNet(num_classes=cfg.num_classes)
net = GoogleNet(num_classes=cfg.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
param_dict = load_checkpoint(args_opt.checkpoint_path)
param_dict = load_checkpoint(cfg.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
dataset = dataset.create_dataset(args_opt.data_path, 1, False)
res = model.eval(dataset)
print("result: ", res)
dataset = create_dataset(cfg.data_path, 1, False)
acc = model.eval(dataset)
print("accuracy: ", acc)

@ -0,0 +1,36 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into geir and onnx models#################
python export.py
"""
import numpy as np
import mindspore as ms
from mindspore import Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
from src.config import cifar_cfg as cfg
from src.googlenet import GoogleNet
if __name__ == '__main__':
net = GoogleNet(num_classes=cfg.num_classes)
param_dict = load_checkpoint(cfg.checkpoint_path)
load_param_into_net(net, param_dict)
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]), ms.float32)
export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX")
export(net, input_arr, file_name=cfg.geir_filename, file_format="GEIR")

@ -0,0 +1,23 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
ulimit -u unlimited
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
export DEVICE_ID=0
python ${BASEPATH}/../eval.py > ./eval.log 2>&1 &

@ -14,28 +14,24 @@
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]"
if [ $# != 1 ]
then
echo "Usage: sh run_train.sh [MINDSPORE_HCCL_CONFIG_PATH]"
exit 1
fi
if [ ! -f $1 ]
then
then
echo "error: MINDSPORE_HCCL_CONFIG_PATH=$1 is not a file"
exit 1
fi
if [ ! -d $2 ]
then
echo "error: DATA_PATH=$2 is not a directory"
exit 1
fi
fi
ulimit -u unlimited
export DEVICE_NUM=8
export RANK_SIZE=8
export MINDSPORE_HCCL_CONFIG_PATH=$1
MINDSPORE_HCCL_CONFIG_PATH=$(realpath $1)
export MINDSPORE_HCCL_CONFIG_PATH
echo "MINDSPORE_HCCL_CONFIG_PATH=${MINDSPORE_HCCL_CONFIG_PATH}"
for((i=0; i<${DEVICE_NUM}; i++))
do
@ -43,11 +39,11 @@ do
export RANK_ID=$i
rm -rf ./train_parallel$i
mkdir ./train_parallel$i
cp *.py ./train_parallel$i
cp *.sh ./train_parallel$i
cd ./train_parallel$i || exit
cp -r ./src ./train_parallel$i
cp ./train.py ./train_parallel$i
echo "start training for rank $RANK_ID, device $DEVICE_ID"
cd ./train_parallel$i ||exit
env > env.log
python train.py --data_path=$2 --device_id=$i &> log &
python train.py --device_id=$i > log 2>&1 &
cd ..
done

@ -18,6 +18,7 @@ network config setting, will be used in main.py
from easydict import EasyDict as edict
cifar_cfg = edict({
'pre_trained': False,
'num_classes': 10,
'lr_init': 0.1,
'batch_size': 128,
@ -27,5 +28,11 @@ cifar_cfg = edict({
'buffer_size': 10,
'image_height': 224,
'image_width': 224,
'keep_checkpoint_max': 10
'data_path': './cifar10',
'device_target': 'Ascend',
'device_id': 4,
'keep_checkpoint_max': 10,
'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt',
'onnx_filename': 'googlenet.onnx',
'geir_filename': 'googlenet.geir'
})

@ -21,7 +21,7 @@ import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.transforms.vision.c_transforms as vision
from config import cifar_cfg as cfg
from src.config import cifar_cfg as cfg
def create_dataset(data_home, repeat_num=1, training=True):

@ -0,0 +1,142 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GoogleNet"""
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
from mindspore.ops import operations as P
def weight_variable():
"""Weight variable."""
return TruncatedNormal(0.02)
class Conv2dBlock(nn.Cell):
"""
Basic convolutional block
Args:
in_channles (int): Input channel.
out_channels (int): Output channel.
kernel_size (int): Input kernel size. Default: 1
stride (int): Stride size for the first convolutional layer. Default: 1.
padding (int): Implicit paddings on both sides of the input. Default: 0.
pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
Returns:
Tensor, output tensor.
"""
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
super(Conv2dBlock, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, pad_mode=pad_mode, weight_init=weight_variable())
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
self.relu = nn.ReLU()
def construct(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Inception(nn.Cell):
"""
Inception Block
"""
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
super(Inception, self).__init__()
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
self.concat = P.Concat(axis=1)
def construct(self, x):
branch1 = self.b1(x)
branch2 = self.b2(x)
branch3 = self.b3(x)
cell, argmax = self.maxpool(x)
branch4 = self.b4(cell)
_ = argmax
return self.concat((branch1, branch2, branch3, branch4))
class GoogleNet(nn.Cell):
"""
Googlenet architecture
"""
def __init__(self, num_classes):
super(GoogleNet, self).__init__()
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
self.mean = P.ReduceMean(keep_dims=True)
self.dropout = nn.Dropout(keep_prob=0.8)
self.flatten = nn.Flatten()
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
bias_init=weight_variable())
def construct(self, x):
x = self.conv1(x)
x, argmax = self.maxpool1(x)
x = self.conv2(x)
x = self.conv3(x)
x, argmax = self.maxpool2(x)
x = self.block3a(x)
x = self.block3b(x)
x, argmax = self.maxpool3(x)
x = self.block4a(x)
x = self.block4b(x)
x = self.block4c(x)
x = self.block4d(x)
x = self.block4e(x)
x, argmax = self.maxpool4(x)
x = self.block5a(x)
x = self.block5b(x)
x = self.mean(x, (2, 3))
x = self.flatten(x)
x = self.classifier(x)
_ = argmax
return x

@ -14,7 +14,7 @@
# ============================================================================
"""
#################train googlent example on cifar10########################
python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
python train.py
"""
import argparse
import os
@ -26,14 +26,14 @@ import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.communication.management import init
from mindspore.model_zoo.googlenet import GooGLeNet
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from dataset import create_dataset
from config import cifar_cfg as cfg
from src.config import cifar_cfg as cfg
from src.dataset import create_dataset
from src.googlenet import GoogleNet
random.seed(1)
np.random.seed(1)
@ -62,14 +62,14 @@ def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Cifar10 classification')
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
context.set_context(device_id=args_opt.device_id)
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
if args_opt.device_id is not None:
context.set_context(device_id=args_opt.device_id)
else:
context.set_context(device_id=cfg.device_id)
device_num = int(os.environ.get("DEVICE_NUM", 1))
if device_num > 1:
@ -78,10 +78,14 @@ if __name__ == '__main__':
mirror_mean=True)
init()
dataset = create_dataset(args_opt.data_path, cfg.epoch_size)
dataset = create_dataset(cfg.data_path, cfg.epoch_size)
batch_num = dataset.get_dataset_size()
net = GooGLeNet(num_classes=cfg.num_classes)
net = GoogleNet(num_classes=cfg.num_classes)
# Continue training if set pre_trained to be True
if cfg.pre_trained:
param_dict = load_checkpoint(cfg.checkpoint_path)
load_param_into_net(net, param_dict)
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
weight_decay=cfg.weight_decay)
Loading…
Cancel
Save