!4130 modify some bug and add test case for gpu dropout op
Merge pull request !4130 from hanhuifeng/gpu_dropoutpull/4130/MERGE
commit
8040e8bf89
@ -0,0 +1,54 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_prob):
|
||||
super(Net, self).__init__()
|
||||
self.drop = P.Dropout(keep_prob)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.drop(x_)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dropout():
|
||||
x_shape = [32, 16, 2, 5]
|
||||
x = np.ones(x_shape).astype(np.float32)
|
||||
keep_prob = 0.4
|
||||
dropout = Net(keep_prob)
|
||||
tx = Tensor(x)
|
||||
output, mask = dropout(tx)
|
||||
# check output
|
||||
output_np = output.asnumpy()
|
||||
elem_count = x.size
|
||||
nonzero_count = np.count_nonzero(output_np)
|
||||
assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
|
||||
output_sum = np.sum(output_np)
|
||||
x_sum = np.sum(x)
|
||||
assert abs(output_sum - x_sum)/x_sum < 0.1
|
||||
# check mask
|
||||
mask_np = mask.asnumpy()
|
||||
mask_sum = np.sum(mask_np)
|
||||
assert np.count_nonzero(mask_np) == nonzero_count
|
||||
assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1
|
Loading…
Reference in new issue