parent
a5cde3fea3
commit
8241dfa443
@ -0,0 +1,38 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Concat op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
concat_ds_op_info = TBERegOp("Concat") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("concat_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("concat_d") \
|
||||
.partial_flag(True) \
|
||||
.dynamic_shape(True) \
|
||||
.attr("axis", "required", "int", "all") \
|
||||
.input(0, "input_values", False, "dynamic", "all") \
|
||||
.output(0, "output_data", False, "required", "all") \
|
||||
.op_pattern("dynamicFormat") \
|
||||
.dtype_format(DataType.None_None, DataType.None_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(concat_ds_op_info)
|
||||
def _concat_ds_tbe():
|
||||
"""Concat TBE register"""
|
||||
return
|
@ -0,0 +1,49 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, axis=0):
|
||||
super(Net, self).__init__()
|
||||
self.unique = P.Unique()
|
||||
self.reshape = P.Reshape()
|
||||
self.concat = P.Concat(axis=axis)
|
||||
|
||||
def construct(self, x1, x2):
|
||||
out1_unique, _ = self.unique(x1)
|
||||
out2_unique, _ = self.unique(x2)
|
||||
out1_shape = self.reshape(out1_unique, (1, -1, 2))
|
||||
out2_shape = self.reshape(out2_unique, (1, -1, 2))
|
||||
return self.concat((out1_shape, out2_shape))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_concat():
|
||||
x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32)
|
||||
x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32)
|
||||
net = Net(axis=1)
|
||||
output = net(x1, x2)
|
||||
expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]])
|
||||
assert (output.asnumpy() == expect).all()
|
@ -0,0 +1,49 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, axis=0):
|
||||
super(Net, self).__init__()
|
||||
self.unique = P.Unique()
|
||||
self.reshape = P.Reshape()
|
||||
self.concat = P.Concat(axis=axis)
|
||||
|
||||
def construct(self, x1, x2):
|
||||
out1_unique, _ = self.unique(x1)
|
||||
out2_unique, _ = self.unique(x2)
|
||||
out1_shape = self.reshape(out1_unique, (1, -1, 2))
|
||||
out2_shape = self.reshape(out2_unique, (1, -1, 2))
|
||||
return self.concat((out1_shape, out2_shape))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_dynamic_concat_cpu():
|
||||
x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32)
|
||||
x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32)
|
||||
net = Net(axis=1)
|
||||
output = net(x1, x2)
|
||||
expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]])
|
||||
assert (output.asnumpy() == expect).all()
|
Loading…
Reference in new issue