parent
7dc96eb856
commit
824418c8f6
@ -0,0 +1,79 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <random>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "backend/kernel_compiler/cpu/dropout_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void DropoutCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
CheckParam(kernel_node);
|
||||
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
mask_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 1);
|
||||
keep_prob_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "keep_prob");
|
||||
if (keep_prob_ <= 0.0) {
|
||||
MS_LOG(EXCEPTION) << "Keep_prob is smaller or equal to zero but DropoutCPUKernel needs greater than 0";
|
||||
}
|
||||
if (keep_prob_ > 1.0) {
|
||||
MS_LOG(EXCEPTION) << "Keep_prob greater than one but DropoutCPUKernel needs smaller or equal to one";
|
||||
}
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
for (const uint64_t &d : input_shape_) {
|
||||
tensor_size_ *= d;
|
||||
}
|
||||
}
|
||||
|
||||
bool DropoutCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void DropoutCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto mask_addr = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
std::random_device rd;
|
||||
std::mt19937 gen(rd());
|
||||
std::bernoulli_distribution dis(keep_prob_);
|
||||
T scale = (T)(1.f / keep_prob_);
|
||||
for (uint64_t i = 0; i < tensor_size_; ++i) {
|
||||
mask_addr[i] = (T)dis(gen);
|
||||
output_addr[i] = mask_addr[i] * input_addr[i] * scale;
|
||||
}
|
||||
}
|
||||
|
||||
void DropoutCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but DropoutCPUKernel needs 1 input.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 2) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but DropoutCPUKernel needs 1 output.";
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,60 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_DROPOUT_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_DROPOUT_CPU_KERNEL_H_
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class DropoutCPUKernel : public CPUKernel {
|
||||
public:
|
||||
DropoutCPUKernel() = default;
|
||||
~DropoutCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
void CheckParam(const CNodePtr &kernel_node);
|
||||
std::vector<size_t> input_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> mask_shape_;
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
float keep_prob_ = 0.0;
|
||||
uint64_t tensor_size_ = 1;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Dropout,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
DropoutCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Dropout,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
DropoutCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_DROPOUT_CPU_KERNEL_H_
|
@ -0,0 +1,93 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.dropout = P.Dropout()
|
||||
|
||||
def construct(self, x):
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
x = np.random.randn(3, 3, 4).astype(np.float32)
|
||||
dropout = Net()
|
||||
output, mask = dropout(Tensor(x))
|
||||
print(x)
|
||||
print(output)
|
||||
print(mask)
|
||||
|
||||
|
||||
class Net1(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.dropout = P.Dropout(keep_prob=0.1)
|
||||
|
||||
def construct(self, x):
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net1():
|
||||
x = np.arange(0, 16).reshape(2, 2, 4).astype(np.float32)
|
||||
dropout = Net1()
|
||||
output, mask = dropout(Tensor(x))
|
||||
print(x)
|
||||
print(output)
|
||||
print(mask)
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.dropout = P.Dropout(keep_prob=1.0)
|
||||
|
||||
def construct(self, x):
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net2():
|
||||
x = np.arange(0, 12).reshape(3, 4).astype(np.float16)
|
||||
dropout = Net2()
|
||||
output, mask = dropout(Tensor(x))
|
||||
print(x)
|
||||
print(output)
|
||||
print(mask)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_net()
|
||||
test_net1()
|
||||
test_net2()
|
Loading…
Reference in new issue