|
|
|
@ -29,7 +29,7 @@ from mindspore.train.model import Model, ParallelMode
|
|
|
|
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
|
|
|
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
|
|
|
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
|
|
|
|
from mindspore.communication.management import init
|
|
|
|
|
from mindspore.communication.management import init, get_rank, get_group_size
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
import mindspore.common.initializer as weight_init
|
|
|
|
|
from crossentropy import CrossEntropy
|
|
|
|
@ -40,21 +40,28 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.')
|
|
|
|
|
parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.')
|
|
|
|
|
parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.')
|
|
|
|
|
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
|
|
|
|
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
|
|
|
|
parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
|
|
|
|
|
args_opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id,
|
|
|
|
|
enable_auto_mixed_precision=True)
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
target = args_opt.device_target
|
|
|
|
|
if not args_opt.do_eval and args_opt.run_distribute:
|
|
|
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
|
|
|
mirror_mean=True, parameter_broadcast=True)
|
|
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
|
|
|
|
|
init()
|
|
|
|
|
if target == "Ascend":
|
|
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id,
|
|
|
|
|
enable_auto_mixed_precision=True)
|
|
|
|
|
init()
|
|
|
|
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
|
|
|
mirror_mean=True)
|
|
|
|
|
auto_parallel_context().set_all_reduce_fusion_split_indices([107, 160])
|
|
|
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
|
elif target == "GPU":
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=False)
|
|
|
|
|
init("nccl")
|
|
|
|
|
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
|
|
|
|
|
mirror_mean=True)
|
|
|
|
|
ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
|
|
|
|
|
|
|
|
|
|
epoch_size = config.epoch_size
|
|
|
|
|
net = resnet50(class_num=config.class_num)
|
|
|
|
@ -81,7 +88,7 @@ if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
if args_opt.do_train:
|
|
|
|
|
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True,
|
|
|
|
|
repeat_num=epoch_size, batch_size=config.batch_size)
|
|
|
|
|
repeat_num=epoch_size, batch_size=config.batch_size, target=target)
|
|
|
|
|
step_size = dataset.get_dataset_size()
|
|
|
|
|
|
|
|
|
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
|
|
|
@ -93,9 +100,11 @@ if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
|
|
|
|
config.weight_decay, config.loss_scale)
|
|
|
|
|
|
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2",
|
|
|
|
|
keep_batchnorm_fp32=False)
|
|
|
|
|
if target == "Ascend":
|
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
|
|
|
amp_level="O2", keep_batchnorm_fp32=False)
|
|
|
|
|
elif target == "GPU":
|
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
|
|
@ -104,6 +113,6 @@ if __name__ == '__main__':
|
|
|
|
|
if config.save_checkpoint:
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
|
|
|
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=config.save_checkpoint_path, config=config_ck)
|
|
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
|
|
|
|
|
cb += [ckpt_cb]
|
|
|
|
|
model.train(epoch_size, dataset, callbacks=cb)
|
|
|
|
|