|
|
|
@ -2506,7 +2506,7 @@ class BatchToSpace(PrimitiveWithInfer):
|
|
|
|
|
dimension and block_size with given amount to crop from dimension, respectively.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
block_size (int): The block size of dividing block with value >= 1.
|
|
|
|
|
block_size (int): The block size of dividing block with value >= 2.
|
|
|
|
|
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
|
|
|
|
|
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
|
|
|
|
|
input dimension i+2. It is required that input_shape[i+2]*block_size >= crops[i][0]+crops[i][1].
|
|
|
|
@ -2540,7 +2540,7 @@ class BatchToSpace(PrimitiveWithInfer):
|
|
|
|
|
def __init__(self, block_size, crops):
|
|
|
|
|
"""Init BatchToSpace"""
|
|
|
|
|
validator.check_value_type('block_size', block_size, [int], self.name)
|
|
|
|
|
validator.check('block_size', block_size, '', 1, Rel.GE, self.name)
|
|
|
|
|
validator.check('block_size', block_size, '', 2, Rel.GE, self.name)
|
|
|
|
|
self.block_size = block_size
|
|
|
|
|
validator.check('crops shape', np.array(crops).shape, '', (2, 2))
|
|
|
|
|
for elem in itertools.chain(*crops):
|
|
|
|
|