parent
78f795971b
commit
8481fd59d8
@ -0,0 +1,46 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops.operations._grad_ops as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosgrad_fp32():
|
||||
error = np.ones(4) * 1.0e-7
|
||||
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32)
|
||||
dout_np = np.array([1, 1, 1, 1]).astype(np.float32)
|
||||
output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
expect = np.array([-1, -1.0327955, -1.1547005, -1.0482849])
|
||||
diff = output_ms.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosgrad_fp16():
|
||||
error = np.ones(4) * 1.0e-3
|
||||
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16)
|
||||
dout_np = np.array([1, 1, 1, 1]).astype(np.float16)
|
||||
output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
expect = np.array([-1, -1.033, -1.154, -1.048])
|
||||
diff = output_ms.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
import mindspore.ops.operations._grad_ops as P
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asingrad_fp32():
|
||||
error = np.ones(4) * 1.0e-7
|
||||
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32)
|
||||
dout_np = np.array([1, 1, 1, 1]).astype(np.float32)
|
||||
output_ms = P.AsinGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
expect = np.array([1, 1.0327955, 1.1547005, 1.0482849])
|
||||
diff = output_ms.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_asingrad_fp16():
|
||||
error = np.ones(4) * 1.0e-3
|
||||
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16)
|
||||
dout_np = np.array([1, 1, 1, 1]).astype(np.float16)
|
||||
output_ms = P.AsinGrad()(Tensor(x_np), Tensor(dout_np))
|
||||
expect = np.array([1, 1.033, 1.154, 1.048])
|
||||
diff = output_ms.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
Loading…
Reference in new issue