!284 add FusedSparse(Adam/LazyAdam/Ftrl/ProximalAdagrad) for aicpu

Merge pull request !284 from yanzhenxiang2020/add_fused_sparse_incubator
pull/4243/head
mindspore-ci-bot 5 years ago committed by Gitee
commit 8561a16258

@ -44,3 +44,7 @@ from .laplace import _laplace_aicpu
from .strided_slice import _strided_slice_aicpu
from .strided_slice_grad import _strided_slice_grad_aicpu
from .end_of_sequence import _end_of_sequence_aicpu
from .fused_sparse_adam import _fused_sparse_adam_aicpu
from .fused_sparse_lazy_adam import _fused_sparse_lazy_adam_aicpu
from .fused_sparse_ftrl import _fused_sparse_ftrl_aicpu
from .fused_sparse_proximal_adagrad import _fused_sparse_proximal_adagrad_aicpu

@ -0,0 +1,46 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""FusedSparseAdam op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
fused_sparse_adam_op_info = AiCPURegOp("FusedSparseAdam") \
.fusion_type("OPAQUE") \
.attr("use_locking", "bool") \
.attr("use_nesterov", "bool") \
.input(0, "var", "required") \
.input(1, "m", "required") \
.input(2, "v", "required") \
.input(3, "beta1_power", "required") \
.input(4, "beta2_power", "required") \
.input(5, "lr", "required") \
.input(6, "beta1", "required") \
.input(7, "beta2", "required") \
.input(8, "epsilon", "required") \
.input(9, "grad", "required") \
.input(10, "indices", "required") \
.output(0, "var", "required") \
.output(1, "m", "required") \
.output(2, "v", "required") \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(fused_sparse_adam_op_info)
def _fused_sparse_adam_aicpu():
"""FusedSparseAdam aicpu register"""
return

@ -0,0 +1,41 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""FusedSparseFtrl op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
fused_sparse_ftrl_op_info = AiCPURegOp("FusedSparseFtrl") \
.fusion_type("OPAQUE") \
.attr("lr", "float") \
.attr("l1", "float") \
.attr("l2", "float") \
.attr("lr_power", "float") \
.attr("use_locking", "bool") \
.input(0, "var", "required") \
.input(1, "accum", "required") \
.input(2, "linear", "required") \
.input(3, "grad", "required") \
.input(4, "indices", "required") \
.output(0, "var", "required") \
.output(1, "accum", "required") \
.output(2, "linear", "required") \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(fused_sparse_ftrl_op_info)
def _fused_sparse_ftrl_aicpu():
"""FusedSparseFtrl aicpu register"""
return

@ -0,0 +1,46 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""FusedSparseLazyAdam op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
fused_sparse_lazy_adam_op_info = AiCPURegOp("FusedSparseLazyAdam") \
.fusion_type("OPAQUE") \
.attr("use_locking", "bool") \
.attr("use_nesterov", "bool") \
.input(0, "var", "required") \
.input(1, "m", "required") \
.input(2, "v", "required") \
.input(3, "beta1_power", "required") \
.input(4, "beta2_power", "required") \
.input(5, "lr", "required") \
.input(6, "beta1", "required") \
.input(7, "beta2", "required") \
.input(8, "epsilon", "required") \
.input(9, "grad", "required") \
.input(10, "indices", "required") \
.output(0, "var", "required") \
.output(1, "m", "required") \
.output(2, "v", "required") \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(fused_sparse_lazy_adam_op_info)
def _fused_sparse_lazy_adam_aicpu():
"""FusedSparseLazyAdam aicpu register"""
return

@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""FusedSparseProximalAdagrad op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
fused_sparse_proximal_adagrad_op_info = AiCPURegOp("FusedSparseProximalAdagrad") \
.fusion_type("OPAQUE") \
.attr("use_locking", "bool") \
.input(0, "var", "required") \
.input(1, "accum", "required") \
.input(2, "lr", "required") \
.input(3, "l1", "required") \
.input(4, "l2", "required") \
.input(5, "grad", "required") \
.input(6, "indices", "required") \
.output(0, "var", "required") \
.output(1, "accum", "required") \
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
DataType.F32_Default, DataType.F32_Default, DataType.I32_Default, DataType.F32_Default,
DataType.F32_Default) \
.get_op_info()
@op_info_register(fused_sparse_proximal_adagrad_op_info)
def _fused_sparse_proximal_adagrad_aicpu():
"""FusedSparseProximalAdagrad aicpu register"""
return

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
beta1_power = 0.9
beta2_power = 0.999
lr = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.fused_sparse_adam = P.FusedSparseAdam()
self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
def construct(self, grad, indices):
return self.fused_sparse_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon,
grad, indices)
def test_net():
gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148])
.reshape([2, 1, 2]).astype(np.float32))
indices = Tensor([0, 1], mstype.int32)
net = Net()
output = net(gradient, indices)
print(output)
print(net.var.default_input)
print(net.m.default_input)
print(net.v.default_input)

@ -0,0 +1,50 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
lr = 0.01
l1 = 0.0
l2 = 0.0
lr_power = -0.5
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.fused_sparse_ftrl = P.FusedSparseFtrl(lr=0.1, l1=0.0, l2=0.0, lr_power=-0.5)
self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var")
self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum")
self.linear = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="linear")
def construct(self, grad, indices):
return self.fused_sparse_ftrl(self.var, self.accum, self.linear, grad, indices)
def test_net():
gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2])
.reshape([3, 3]).astype(np.float32))
indices = Tensor(np.ones([3]), mstype.int32)
net = Net()
output = net(gradient, indices)
print(output)
print(net.var.default_input)
print(net.accum.default_input)
print(net.linear.default_input)

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
beta1_power = 0.9
beta2_power = 0.999
lr = 0.001
beta1 = 0.9
beta2 = 0.999
epsilon = 1e-8
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.fused_sparse_lazy_adam = P.FusedSparseLazyAdam()
self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
def construct(self, grad, indices):
return self.fused_sparse_lazy_adam(self.var, self.m, self.v, beta1_power, beta2_power,
lr, beta1, beta2, epsilon, grad, indices)
def test_net():
gradient = Tensor(np.array([0.22948648, 0.14569908, 0.92861906, 0.66870148])
.reshape([2, 1, 2]).astype(np.float32))
indices = Tensor([0, 1], mstype.int32)
net = Net()
output = net(gradient, indices)
print(output)
print(net.var.default_input)
print(net.m.default_input)
print(net.v.default_input)

@ -0,0 +1,47 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
import mindspore.context as context
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.fused_sparse_proximal_adagrad = P.FusedSparseProximalAdagrad()
self.var = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="var")
self.accum = Parameter(Tensor(np.ones([3, 3]).astype(np.float32)), name="accum")
self.lr = 0.01
self.l1 = 0.0
self.l2 = 0.0
def construct(self, grad, indices):
return self.fused_sparse_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2,
grad, indices)
def test_net():
gradient = Tensor(np.array([-3, 2, 3, 0, 0, 0, -4, -1, -2])
.reshape([3, 3]).astype(np.float32))
indices = Tensor(np.ones([3]), mstype.int32)
net = Net()
output = net(gradient, indices)
print(output)
print(net.var.default_input)
print(net.accum.default_input)
Loading…
Cancel
Save