|
|
|
@ -122,7 +122,7 @@ class Optimizer(Cell):
|
|
|
|
|
learning_rate = self._get_single_lr(learning_rate)
|
|
|
|
|
if isinstance(parameters[0], dict):
|
|
|
|
|
self.is_group = True
|
|
|
|
|
self.params = []
|
|
|
|
|
self.group_params = []
|
|
|
|
|
self.group_lr = []
|
|
|
|
|
self.group_weight_decay = []
|
|
|
|
|
self._init_group_params(parameters, learning_rate, weight_decay)
|
|
|
|
@ -133,7 +133,7 @@ class Optimizer(Cell):
|
|
|
|
|
self.learning_rate = Parameter(learning_rate, name="learning_rate")
|
|
|
|
|
|
|
|
|
|
if self.is_group:
|
|
|
|
|
self.parameters = ParameterTuple(self.params)
|
|
|
|
|
self.parameters = ParameterTuple(self.group_params)
|
|
|
|
|
self.weight_decay = tuple(self.group_weight_decay)
|
|
|
|
|
decay_filter = lambda x: x > 0
|
|
|
|
|
self.decay_flags = tuple(decay_filter(x) for x in self.weight_decay)
|
|
|
|
@ -240,7 +240,10 @@ class Optimizer(Cell):
|
|
|
|
|
|
|
|
|
|
params_store = []
|
|
|
|
|
for group_param in parameters:
|
|
|
|
|
self.params += group_param['params']
|
|
|
|
|
if not group_param['params']:
|
|
|
|
|
raise ValueError("Optimizer got an empty parameter list.")
|
|
|
|
|
|
|
|
|
|
self.group_params += group_param['params']
|
|
|
|
|
if 'lr' in group_param.keys():
|
|
|
|
|
params_dynamic_lr = isinstance(group_param['lr'], (Iterable, Tensor))
|
|
|
|
|
|
|
|
|
|