|
|
|
@ -44,6 +44,7 @@ if __name__ == "__main__":
|
|
|
|
|
parser = argparse.ArgumentParser(description='MindSpore AlexNet Example')
|
|
|
|
|
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
|
|
|
|
|
help='dataset name.')
|
|
|
|
|
parser.add_argument('--sink_size', type=int, default=-1, help='control the amount of data in each sink')
|
|
|
|
|
parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'],
|
|
|
|
|
help='device where the code will be implemented (default: Ascend)')
|
|
|
|
|
parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved')
|
|
|
|
@ -97,17 +98,16 @@ if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
loss_scale_manager = None
|
|
|
|
|
metrics = None
|
|
|
|
|
step_per_epoch = ds_train.get_dataset_size() if args.sink_size == -1 else args.sink_size
|
|
|
|
|
if args.dataset_name == 'cifar10':
|
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
|
|
|
lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, ds_train.get_dataset_size()))
|
|
|
|
|
lr = Tensor(get_lr_cifar10(0, cfg.learning_rate, cfg.epoch_size, step_per_epoch))
|
|
|
|
|
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
|
|
|
|
|
metrics = {"Accuracy": Accuracy()}
|
|
|
|
|
|
|
|
|
|
elif args.dataset_name == 'imagenet':
|
|
|
|
|
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
|
|
|
|
|
|
|
|
|
lr = Tensor(get_lr_imagenet(cfg, ds_train.get_dataset_size()))
|
|
|
|
|
|
|
|
|
|
lr = Tensor(get_lr_imagenet(cfg, step_per_epoch))
|
|
|
|
|
opt = nn.Momentum(params=get_param_groups(network),
|
|
|
|
|
learning_rate=lr,
|
|
|
|
|
momentum=cfg.momentum,
|
|
|
|
@ -136,11 +136,11 @@ if __name__ == "__main__":
|
|
|
|
|
else:
|
|
|
|
|
ckpt_save_dir = args.ckpt_path
|
|
|
|
|
|
|
|
|
|
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(),
|
|
|
|
|
time_cb = TimeMonitor(data_size=step_per_epoch)
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
|
|
|
|
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
|
|
|
|
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=ckpt_save_dir, config=config_ck)
|
|
|
|
|
|
|
|
|
|
print("============== Starting Training ==============")
|
|
|
|
|
model.train(cfg.epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
|
|
|
|
|
dataset_sink_mode=args.dataset_sink_mode)
|
|
|
|
|
dataset_sink_mode=args.dataset_sink_mode, sink_size=args.sink_size)
|
|
|
|
|