@ -46,6 +46,7 @@ Parameters for both training and evaluating can be set in config.py.
"momentum": 0.9, # momentum optimizer
"weight_decay": 1e-4, # weight decay
"epoch_size": 120, # epoch sizes for training
"pretrain_epoch_size": 0, # epoch size of pretrain checkpoint
"buffer_size": 1000, # number of queue size in data preprocessing
"image_height": 224, # image height
"image_width": 224, # image width
@ -68,10 +69,10 @@ Parameters for both training and evaluating can be set in config.py.
```
# distributed training
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]
sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_PATH](optional)
# standalone training
sh run_standalone_train.sh [DATASET_PATH]
sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_PATH](optional)
```
#### Launch
@ -79,9 +80,15 @@ sh run_standalone_train.sh [DATASET_PATH]
```bash
# distributed training example(8p)
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc
If you want to load pretrained ckpt file,
sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./ckpt/pretrained.ckpt
# standalone training example(1p)
sh run_standalone_train.sh dataset/ilsvrc
f you want to load pretrained ckpt file,
sh run_standalone_train.sh dataset/ilsvrc ./ckpt/pretrained.ckpt
```
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).