parent
4cd49ed77e
commit
88b5458f78
@ -0,0 +1,91 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
|
||||
class NetReciprocalGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetReciprocalGrad, self).__init__()
|
||||
self.grad = G.ReciprocalGrad()
|
||||
|
||||
def construct(self, y, dy):
|
||||
return self.grad(y, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reciprocal_grad_float32():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
y = Tensor(np.array([[[[-1, 1, 12],
|
||||
[5, 34, 6],
|
||||
[10, 2, -1]]]]).astype(np.float32))
|
||||
dy = Tensor(np.array([[[[29, 1, 55],
|
||||
[2.2, 63, 2],
|
||||
[3, 3, 12]]]]).astype(np.float32))
|
||||
expect = np.array([[[[-29, -1, -7920],
|
||||
[-55, -72828, -72],
|
||||
[-300, -12, -12]]]]).astype(np.float32)
|
||||
net = NetReciprocalGrad()
|
||||
output = net(y, dy)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
y = Tensor(np.array([[[[-1, 1, 12],
|
||||
[5, 34, 6],
|
||||
[10, 2, -1]]]]).astype(np.float32))
|
||||
dy = Tensor(np.array([[[[29, 1, 55],
|
||||
[2.2, 63, 2],
|
||||
[3, 3, 12]]]]).astype(np.float32))
|
||||
expect = np.array([[[[-29, -1, -7920],
|
||||
[-55, -72828, -72],
|
||||
[-300, -12, -12]]]]).astype(np.float32)
|
||||
net = NetReciprocalGrad()
|
||||
output = net(y, dy)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_reciprocal_grad_float16():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
y = Tensor(np.array([[0.01, 0.2, 0.22],
|
||||
[10.002, 2, -1]]).astype(np.float16))
|
||||
dy = Tensor(np.array([[34, 1, 55],
|
||||
[3, 3, 63]]).astype(np.float16))
|
||||
expect = np.array([[-0.0034, -0.03998, -2.662],
|
||||
[-300, -12, -63]]).astype(np.float16)
|
||||
net = NetReciprocalGrad()
|
||||
output = net(y, dy)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
y = Tensor(np.array([[0.01, 0.2, 0.22],
|
||||
[10.002, 2, -1]]).astype(np.float16))
|
||||
dy = Tensor(np.array([[34, 1, 55],
|
||||
[3, 3, 63]]).astype(np.float16))
|
||||
expect = np.array([[-0.0034, -0.03998, -2.662],
|
||||
[-300, -12, -63]]).astype(np.float16)
|
||||
net = NetReciprocalGrad()
|
||||
output = net(y, dy)
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
|
Loading…
Reference in new issue