|
|
|
@ -13,18 +13,26 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
import pytest
|
|
|
|
|
import numpy as np
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
|
|
|
from mindspore.nn import Dense
|
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell
|
|
|
|
|
from mindspore.nn.optim import Momentum
|
|
|
|
|
from mindspore.nn.metrics import Accuracy
|
|
|
|
|
from mindspore.train import Model
|
|
|
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
|
from mindspore.model_zoo.lenet import LeNet5
|
|
|
|
|
from mindspore.train.callback import LossMonitor
|
|
|
|
|
|
|
|
|
|
import mindspore.dataset as ds
|
|
|
|
|
import mindspore.dataset.transforms.vision.c_transforms as CV
|
|
|
|
|
import mindspore.dataset.transforms.c_transforms as C
|
|
|
|
|
from mindspore.dataset.transforms.vision import Inter
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
@ -64,7 +72,7 @@ class LeNet(nn.Cell):
|
|
|
|
|
def multisteplr(total_steps, gap, base_lr=0.9, gamma=0.1, dtype=mstype.float32):
|
|
|
|
|
lr = []
|
|
|
|
|
for step in range(total_steps):
|
|
|
|
|
lr_ = base_lr * gamma ** (step//gap)
|
|
|
|
|
lr_ = base_lr * gamma ** (step // gap)
|
|
|
|
|
lr.append(lr_)
|
|
|
|
|
return Tensor(np.array(lr), dtype)
|
|
|
|
|
|
|
|
|
@ -90,3 +98,60 @@ def test_train_lenet():
|
|
|
|
|
loss = train_network(data, label)
|
|
|
|
|
losses.append(loss)
|
|
|
|
|
print(losses)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
|
|
|
|
num_parallel_workers=1):
|
|
|
|
|
"""
|
|
|
|
|
create dataset for train or test
|
|
|
|
|
"""
|
|
|
|
|
# define dataset
|
|
|
|
|
mnist_ds = ds.MnistDataset(data_path)
|
|
|
|
|
|
|
|
|
|
resize_height, resize_width = 32, 32
|
|
|
|
|
rescale = 1.0 / 255.0
|
|
|
|
|
shift = 0.0
|
|
|
|
|
rescale_nml = 1 / 0.3081
|
|
|
|
|
shift_nml = -1 * 0.1307 / 0.3081
|
|
|
|
|
|
|
|
|
|
# define map operations
|
|
|
|
|
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
|
|
|
|
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
|
|
|
|
rescale_op = CV.Rescale(rescale, shift)
|
|
|
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
|
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
|
|
|
|
|
|
|
|
# apply map operations on images
|
|
|
|
|
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
|
|
|
|
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
|
|
|
|
|
|
|
|
|
# apply DatasetOps
|
|
|
|
|
buffer_size = 10000
|
|
|
|
|
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
|
|
|
|
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
|
|
|
|
mnist_ds = mnist_ds.repeat(repeat_size)
|
|
|
|
|
|
|
|
|
|
return mnist_ds
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_train_and_eval_lenet():
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False)
|
|
|
|
|
network = LeNet5(10)
|
|
|
|
|
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
|
|
|
|
net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
|
|
|
|
|
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
|
|
|
|
|
|
|
|
|
print("============== Starting Training ==============")
|
|
|
|
|
ds_train = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "train"), 32, 1)
|
|
|
|
|
model.train(1, ds_train, callbacks=[LossMonitor()], dataset_sink_mode=True)
|
|
|
|
|
|
|
|
|
|
print("============== Starting Testing ==============")
|
|
|
|
|
ds_eval = create_dataset(os.path.join('/home/workspace/mindspore_dataset/mnist', "test"), 32, 1)
|
|
|
|
|
acc = model.eval(ds_eval, dataset_sink_mode=True)
|
|
|
|
|
print("============== Accuracy:{} ==============".format(acc))
|
|
|
|
|