parent
d6f6269ff1
commit
8fc85139c1
@ -0,0 +1,77 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/rmsprop_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void RMSPropCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto node_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (node_name == "ApplyCenteredRMSProp") {
|
||||
use_center_ = true;
|
||||
}
|
||||
|
||||
if (node_name == "ApplyRMSProp") {
|
||||
decay_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "rho");
|
||||
momentum_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "momentum");
|
||||
epsilon_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "epsilon");
|
||||
}
|
||||
auto input_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (auto &dim : input_shape) {
|
||||
size_ *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool RMSPropCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (!use_center_) {
|
||||
float *variable = reinterpret_cast<float *>(inputs[0]->addr);
|
||||
float *mean_square = reinterpret_cast<float *>(inputs[1]->addr);
|
||||
float *moment = reinterpret_cast<float *>(inputs[2]->addr);
|
||||
float *learning_rate = reinterpret_cast<float *>(inputs[3]->addr);
|
||||
float *gradients = reinterpret_cast<float *>(inputs[4]->addr);
|
||||
|
||||
for (size_t i = 0; i < size_; i++) {
|
||||
mean_square[i] += (gradients[i] * gradients[i] - mean_square[i]) * (1.0 - decay_);
|
||||
moment[i] = moment[i] * momentum_ + (gradients[i] * learning_rate[0]) / sqrt(mean_square[i] + epsilon_);
|
||||
variable[i] -= moment[i];
|
||||
}
|
||||
} else {
|
||||
float *variable = reinterpret_cast<float *>(inputs[0]->addr);
|
||||
float *mean_gradients = reinterpret_cast<float *>(inputs[1]->addr);
|
||||
float *mean_square = reinterpret_cast<float *>(inputs[2]->addr);
|
||||
float *moment = reinterpret_cast<float *>(inputs[3]->addr);
|
||||
float *gradients = reinterpret_cast<float *>(inputs[4]->addr);
|
||||
float *learning_rate = reinterpret_cast<float *>(inputs[5]->addr);
|
||||
float *decay = reinterpret_cast<float *>(inputs[6]->addr);
|
||||
float *momentum = reinterpret_cast<float *>(inputs[7]->addr);
|
||||
float *epsilon = reinterpret_cast<float *>(inputs[8]->addr);
|
||||
|
||||
for (size_t i = 0; i < size_; i++) {
|
||||
mean_square[i] += (gradients[i] * gradients[i] - mean_square[i]) * (1.0 - decay[0]);
|
||||
mean_gradients[i] += (gradients[i] - mean_gradients[i]) * (1.0 - decay[0]);
|
||||
auto denom = (mean_square[i] - mean_gradients[i] * mean_gradients[i]) + epsilon[0];
|
||||
if (denom > 0) {
|
||||
moment[i] = moment[i] * momentum[0] + (gradients[i] * learning_rate[0]) / sqrt(denom);
|
||||
variable[i] -= moment[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,69 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class RMSPropCPUKernel : public CPUKernel {
|
||||
public:
|
||||
RMSPropCPUKernel() : size_(1), use_center_(false), decay_(0.0), momentum_(0.9), epsilon_(1e-12) {}
|
||||
~RMSPropCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
size_t size_;
|
||||
bool use_center_;
|
||||
float decay_;
|
||||
float momentum_;
|
||||
float epsilon_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(ApplyRMSProp,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
RMSPropCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(ApplyCenteredRMSProp,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
RMSPropCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_
|
@ -0,0 +1,202 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetCenteredRMSProp(nn.Cell):
|
||||
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
|
||||
super(NetCenteredRMSProp, self).__init__()
|
||||
self.rms_opt = P.ApplyCenteredRMSProp()
|
||||
self.lr = lr
|
||||
self.decay = decay
|
||||
self.momentum = momentum
|
||||
self.epsilon = epsilon
|
||||
self.var = var
|
||||
self.g = g
|
||||
self.mg = mg
|
||||
self.rms = rms
|
||||
self.mom = mom
|
||||
|
||||
def construct(self):
|
||||
return self.rms_opt(self.var, self.mg, self.rms, self.mom, self.g, self.lr, self.decay, self.momentum,
|
||||
self.epsilon)
|
||||
|
||||
|
||||
class NetRMSProp(nn.Cell):
|
||||
def __init__(self, lr, decay, momentum, epsilon, var, g, mg, rms, mom):
|
||||
super(NetRMSProp, self).__init__()
|
||||
self.lr = lr
|
||||
self.decay = decay
|
||||
self.momentum = momentum
|
||||
self.epsilon = epsilon
|
||||
self.var = var
|
||||
self.g = g
|
||||
self.mg = mg
|
||||
self.rms = rms
|
||||
self.mom = mom
|
||||
self.rms_opt = P.ApplyRMSProp()
|
||||
|
||||
def construct(self):
|
||||
return self.rms_opt(self.var, self.rms, self.mom, self.lr, self.g, self.decay, self.momentum, self.epsilon)
|
||||
|
||||
|
||||
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
||||
learning_rate, decay, momentum, epsilon):
|
||||
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
|
||||
moment = momentum * moment + learning_rate / np.sqrt(mean_square + epsilon) * gradients
|
||||
variable = variable - moment
|
||||
return variable, gradients, mean_square, moment
|
||||
|
||||
|
||||
def rmspropcented_numpy(variable, gradients, mean_gradients, mean_square, moment,
|
||||
learning_rate, decay, momentum, epsilon):
|
||||
mean_gradients = mean_gradients * decay + (1.0 - decay) * gradients
|
||||
mean_square = mean_square * decay + (1.0 - decay) * gradients * gradients
|
||||
moment = momentum * moment + learning_rate / np.sqrt(
|
||||
mean_square - mean_gradients * mean_gradients + epsilon) * gradients
|
||||
variable = variable - moment
|
||||
return variable, gradients, mean_gradients, mean_square, moment
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_rmsprop():
|
||||
learning_rate, decay, momentum, epsilon, centered = [0.5, 0.8, 0.9, 1e-3, True]
|
||||
|
||||
variable_np = np.array([1.0, 2.0], dtype=np.float32)
|
||||
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
|
||||
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
|
||||
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
||||
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
||||
|
||||
variable = Tensor(variable_np)
|
||||
gradients = Tensor(gradients_np)
|
||||
mean_gradients = Tensor(mean_gradients_np)
|
||||
mean_square = Tensor(mean_square_np)
|
||||
moment = Tensor(moment_np)
|
||||
|
||||
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
|
||||
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
|
||||
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
|
||||
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
|
||||
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
|
||||
|
||||
if centered:
|
||||
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
||||
mean_square_ms, moment_ms)
|
||||
_ = net()
|
||||
|
||||
else:
|
||||
variable_np, gradients_np, mean_square_np, moment_np = \
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
||||
mean_square_ms, moment_ms)
|
||||
_ = net()
|
||||
|
||||
error = np.ones(shape=variable_np.shape) * 10e-6
|
||||
diff = variable_ms.asnumpy() - variable_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=gradients_np.shape) * 10e-6
|
||||
diff = gradients_ms.asnumpy() - gradients_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
|
||||
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=mean_square_np.shape) * 10e-6
|
||||
diff = mean_square_ms.asnumpy() - mean_square_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=moment_np.shape) * 10e-6
|
||||
diff = moment_ms.asnumpy() - moment_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_rmspropcenter():
|
||||
learning_rate, decay, momentum, epsilon, centered = [0.1, 0.3, 0.9, 1.0, False]
|
||||
|
||||
variable_np = np.array([1.0, 2.0], dtype=np.float32)
|
||||
gradients_np = np.array([0.1, 0.2], dtype=np.float32)
|
||||
mean_gradients_np = np.array([0.0, 0.0], dtype=np.float32)
|
||||
mean_square_np = np.array([epsilon, epsilon], dtype=np.float32)
|
||||
moment_np = np.array([0.0, 0.0], dtype=np.float32)
|
||||
|
||||
variable = Tensor(variable_np)
|
||||
gradients = Tensor(gradients_np)
|
||||
mean_gradients = Tensor(mean_gradients_np)
|
||||
mean_square = Tensor(mean_square_np)
|
||||
moment = Tensor(moment_np)
|
||||
|
||||
variable_ms = Parameter(initializer(variable, variable.shape), name='var')
|
||||
gradients_ms = Parameter(initializer(gradients, gradients.shape), name='grad')
|
||||
mean_gradients_ms = Parameter(initializer(mean_gradients, mean_gradients.shape), name='mg')
|
||||
mean_square_ms = Parameter(initializer(mean_square, mean_square.shape), name='msr')
|
||||
moment_ms = Parameter(initializer(moment, moment.shape), name='mom')
|
||||
|
||||
if centered:
|
||||
variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np = \
|
||||
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
||||
mean_square_ms, moment_ms)
|
||||
_ = net()
|
||||
else:
|
||||
variable_np, gradients_np, mean_square_np, moment_np = \
|
||||
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
||||
learning_rate, decay, momentum, epsilon)
|
||||
net = NetRMSProp(learning_rate, decay, momentum, epsilon, variable_ms, gradients_ms, mean_gradients_ms,
|
||||
mean_square_ms, moment_ms)
|
||||
_ = net()
|
||||
|
||||
error = np.ones(shape=variable_np.shape) * 10e-6
|
||||
diff = variable_ms.asnumpy() - variable_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=gradients_np.shape) * 10e-6
|
||||
diff = gradients_ms.asnumpy() - gradients_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=mean_gradients_np.shape) * 10e-6
|
||||
diff = mean_gradients_ms.asnumpy() - mean_gradients_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=mean_square_np.shape) * 10e-6
|
||||
diff = mean_square_ms.asnumpy() - mean_square_np
|
||||
assert np.all(diff < error)
|
||||
|
||||
error = np.ones(shape=moment_np.shape) * 10e-6
|
||||
diff = moment_ms.asnumpy() - moment_np
|
||||
assert np.all(diff < error)
|
Loading…
Reference in new issue