!10486 add export file for fasttext
From: @zhaojichen Reviewed-by: @liangchenghui,@c_34 Signed-off-by: @c_34pull/10486/MERGE
commit
92f576287d
@ -0,0 +1,100 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""export checkpoint file into models"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore import context
|
||||
from mindspore.train.serialization import load_checkpoint, export, load_param_into_net
|
||||
from src.fasttext_model import FastText
|
||||
|
||||
parser = argparse.ArgumentParser(description='fasttexts')
|
||||
parser.add_argument('--device_target', type=str, choices=["Ascend", "GPU", "CPU"],
|
||||
default='Ascend', help='Device target')
|
||||
parser.add_argument('--device_id', type=int, default=0, help='Device id')
|
||||
parser.add_argument('--ckpt_file', type=str, required=True, help='Checkpoint file path')
|
||||
parser.add_argument('--file_name', type=str, default='fasttexts', help='Output file name')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR',
|
||||
help='Output file format')
|
||||
parser.add_argument('--data_name', type=str, required=True, default='ag',
|
||||
help='Dataset name. eg. ag, dbpedia, yelp_p')
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.data_name == "ag":
|
||||
from src.config import config_ag as config
|
||||
target_label1 = ['0', '1', '2', '3']
|
||||
elif args.data_name == 'dbpedia':
|
||||
from src.config import config_db as config
|
||||
target_label1 = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13']
|
||||
elif args.data_name == 'yelp_p':
|
||||
from src.config import config_yelpp as config
|
||||
target_label1 = ['0', '1']
|
||||
|
||||
context.set_context(
|
||||
mode=context.GRAPH_MODE,
|
||||
save_graphs=False,
|
||||
device_target="Ascend")
|
||||
|
||||
class FastTextInferExportCell(nn.Cell):
|
||||
"""
|
||||
Encapsulation class of FastText network infer.
|
||||
|
||||
Args:
|
||||
network (nn.Cell): FastText model.
|
||||
|
||||
Returns:
|
||||
Tuple[Tensor, Tensor], predicted_ids
|
||||
"""
|
||||
def __init__(self, network):
|
||||
super(FastTextInferExportCell, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.argmax = P.ArgMaxWithValue(axis=1, keep_dims=True)
|
||||
self.log_softmax = nn.LogSoftmax(axis=1)
|
||||
|
||||
def construct(self, src_tokens, src_tokens_lengths):
|
||||
"""construct fasttext infer cell"""
|
||||
prediction = self.network(src_tokens, src_tokens_lengths)
|
||||
predicted_idx = self.log_softmax(prediction)
|
||||
predicted_idx, _ = self.argmax(predicted_idx)
|
||||
|
||||
return predicted_idx
|
||||
|
||||
def run_fasttext_export():
|
||||
"""export function"""
|
||||
fasttext_model = FastText(config.vocab_size, config.embedding_dims, config.num_class)
|
||||
parameter_dict = load_checkpoint(args.ckpt_file)
|
||||
load_param_into_net(fasttext_model, parameter_dict)
|
||||
ft_infer = FastTextInferExportCell(fasttext_model)
|
||||
|
||||
if args.data_name == "ag":
|
||||
src_tokens_shape = [config.batch_size, 467]
|
||||
src_tokens_length_shape = [config.batch_size, 1]
|
||||
elif args.data_name == 'dbpedia':
|
||||
src_tokens_shape = [config.batch_size, 1120]
|
||||
src_tokens_length_shape = [config.batch_size, 1]
|
||||
elif args.data_name == 'yelp_p':
|
||||
src_tokens_shape = [config.batch_size, 2955]
|
||||
src_tokens_length_shape = [config.batch_size, 1]
|
||||
|
||||
file_name = args.file_name + '_' + args.data_name
|
||||
src_tokens = Tensor(np.ones((src_tokens_shape)).astype(np.int32))
|
||||
src_tokens_length = Tensor(np.ones((src_tokens_length_shape)).astype(np.int32))
|
||||
export(ft_infer, src_tokens, src_tokens_length, file_name=file_name, file_format=args.file_format)
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_fasttext_export()
|
Loading…
Reference in new issue