|
|
|
@ -278,6 +278,8 @@ def test_cv_minddataset_partition_num_samples_0(add_and_remove_cv_file):
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
num_shards=num_shards,
|
|
|
|
|
shard_id=partition_id, num_samples=1)
|
|
|
|
|
|
|
|
|
|
assert data_set.get_dataset_size() == 1
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info("-------------- partition : {} ------------------------".format(partition_id))
|
|
|
|
@ -301,6 +303,8 @@ def test_cv_minddataset_partition_num_samples_1(add_and_remove_cv_file):
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
num_shards=num_shards,
|
|
|
|
|
shard_id=partition_id, num_samples=2)
|
|
|
|
|
|
|
|
|
|
assert data_set.get_dataset_size() == 2
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info("-------------- partition : {} ------------------------".format(partition_id))
|
|
|
|
@ -319,11 +323,13 @@ def test_cv_minddataset_partition_num_samples_2(add_and_remove_cv_file):
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
|
|
|
|
|
|
def partitions(num_shards):
|
|
|
|
|
def partitions(num_shards, expect):
|
|
|
|
|
for partition_id in range(num_shards):
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
num_shards=num_shards,
|
|
|
|
|
shard_id=partition_id, num_samples=3)
|
|
|
|
|
|
|
|
|
|
assert data_set.get_dataset_size() == expect
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info("-------------- partition : {} ------------------------".format(partition_id))
|
|
|
|
@ -332,10 +338,25 @@ def test_cv_minddataset_partition_num_samples_2(add_and_remove_cv_file):
|
|
|
|
|
num_iter += 1
|
|
|
|
|
return num_iter
|
|
|
|
|
|
|
|
|
|
assert partitions(4) == 3
|
|
|
|
|
assert partitions(5) == 2
|
|
|
|
|
assert partitions(9) == 2
|
|
|
|
|
assert partitions(4, 3) == 3
|
|
|
|
|
assert partitions(5, 2) == 2
|
|
|
|
|
assert partitions(9, 2) == 2
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_partition_num_samples_3(add_and_remove_cv_file):
|
|
|
|
|
"""tutorial for cv minddataset."""
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
|
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers, num_shards=1, shard_id=0, num_samples=5)
|
|
|
|
|
|
|
|
|
|
assert data_set.get_dataset_size() == 5
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info("-------------- item[file_name]: {}-----------------------".format(item["file_name"]))
|
|
|
|
|
logger.info("-------------- item[label]: {} -----------------------".format(item["label"]))
|
|
|
|
|
num_iter += 1
|
|
|
|
|
|
|
|
|
|
assert num_iter == 5
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_partition_tutorial_check_shuffle_result(add_and_remove_cv_file):
|
|
|
|
|
"""tutorial for cv minddataset."""
|
|
|
|
@ -841,13 +862,10 @@ def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_
|
|
|
|
|
|
|
|
|
|
# define map operations
|
|
|
|
|
decode_op = vision.Decode()
|
|
|
|
|
resize_op = vision.Resize(
|
|
|
|
|
(resize_height, resize_width), ds.transforms.vision.Inter.LINEAR)
|
|
|
|
|
resize_op = vision.Resize((resize_height, resize_width))
|
|
|
|
|
|
|
|
|
|
data_set = data_set.map(
|
|
|
|
|
input_columns=["data"], operations=decode_op, num_parallel_workers=4)
|
|
|
|
|
data_set = data_set.map(
|
|
|
|
|
input_columns=["data"], operations=resize_op, num_parallel_workers=4)
|
|
|
|
|
data_set = data_set.map(input_columns=["data"], operations=decode_op, num_parallel_workers=4)
|
|
|
|
|
data_set = data_set.map(input_columns=["data"], operations=resize_op, num_parallel_workers=4)
|
|
|
|
|
|
|
|
|
|
data_set = data_set.batch(2)
|
|
|
|
|
assert data_set.get_dataset_size() == 5
|
|
|
|
|