|
|
|
@ -25,24 +25,29 @@ context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NetCenteredRMSProp(nn.Cell):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon):
|
|
|
|
|
super(NetCenteredRMSProp, self).__init__()
|
|
|
|
|
self.rms_opt = P.ApplyCenteredRMSProp()
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.decay = decay
|
|
|
|
|
self.momentum = momentum
|
|
|
|
|
self.epsilon = epsilon
|
|
|
|
|
|
|
|
|
|
def construct(self, var, g, mg, rms, mom, lr, decay, momentum, epsilon):
|
|
|
|
|
return self.rms_opt(var, mg, rms, mom, g, lr, decay, momentum, epsilon)
|
|
|
|
|
def construct(self, var, g, mg, rms, mom):
|
|
|
|
|
return self.rms_opt(var, mg, rms, mom, g, self.lr, self.decay, self.momentum, self.epsilon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NetRMSProp(nn.Cell):
|
|
|
|
|
def __init__(self, decay, momentum, epsilon):
|
|
|
|
|
def __init__(self, lr, decay, momentum, epsilon):
|
|
|
|
|
super(NetRMSProp, self).__init__()
|
|
|
|
|
self.lr = lr
|
|
|
|
|
self.decay = decay
|
|
|
|
|
self.momentum = momentum
|
|
|
|
|
self.epsilon = epsilon
|
|
|
|
|
self.rms_opt = P.ApplyRMSProp()
|
|
|
|
|
|
|
|
|
|
def construct(self, var, g, mg, rms, mom, lr):
|
|
|
|
|
return self.rms_opt(var, rms, mom, lr, g, self.decay, self.momentum, self.epsilon)
|
|
|
|
|
def construct(self, var, g, mg, rms, mom):
|
|
|
|
|
return self.rms_opt(var, rms, mom, self.lr, g, self.decay, self.momentum, self.epsilon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rmsprop_numpy(variable, gradients, mean_square, moment,
|
|
|
|
@ -82,16 +87,14 @@ def test_rmsprop():
|
|
|
|
|
if centered:
|
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetCenteredRMSProp()
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
|
|
|
|
|
moment_ms, learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetRMSProp(decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms,
|
|
|
|
|
moment_ms, learning_rate)
|
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
|
@ -135,15 +138,13 @@ def test_rmspropcenter():
|
|
|
|
|
if centered:
|
|
|
|
|
rmspropcented_numpy(variable_np, gradients_np, mean_gradients_np, mean_square_np, moment_np,
|
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetCenteredRMSProp()
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
|
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetCenteredRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
|
else:
|
|
|
|
|
rmsprop_numpy(variable_np, gradients_np, mean_square_np, moment_np,
|
|
|
|
|
learning_rate, decay, momentum, epsilon)
|
|
|
|
|
net = NetRMSProp(decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms,
|
|
|
|
|
learning_rate)
|
|
|
|
|
net = NetRMSProp(learning_rate, decay, momentum, epsilon)
|
|
|
|
|
_ = net(variable_ms, gradients_ms, mean_gradients_ms, mean_square_ms, moment_ms)
|
|
|
|
|
|
|
|
|
|
error = np.ones(shape=variable_np.shape) * 10e-6
|
|
|
|
|
diff = variable_ms.asnumpy() - variable_np
|
|
|
|
|