!9646 Add Expm1 Operator for CPU

From: @xukailun_1
Reviewed-by: 
Signed-off-by:
pull/9646/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 9366200dba

@ -0,0 +1,66 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/expm1_cpu_kernel.h"
#include <cmath>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void Expm1CPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but Expm1CPUKernel needs 1 inputs.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but Expm1CPUKernel needs 1 output.";
}
input_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
if (input_dtype_ != kNumberTypeFloat16 && input_dtype_ != kNumberTypeFloat32 && input_dtype_ != kNumberTypeFloat) {
MS_LOG(EXCEPTION) << "Unsupported input type found.";
}
}
bool Expm1CPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (input_dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (input_dtype_ == kNumberTypeFloat32 || input_dtype_ == kNumberTypeFloat) {
LaunchKernel<float>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Only support float, half, but actual data type is " << TypeIdLabel(input_dtype_);
}
return true;
}
template <typename T>
void Expm1CPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
T *input = reinterpret_cast<T *>(inputs[0]->addr);
T *output = reinterpret_cast<T *>(outputs[0]->addr);
size_t elem_num = inputs[0]->size / sizeof(T);
for (size_t i = 0; i < elem_num; i++) {
output[i] = exp(input[i]) - T(1);
}
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,53 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class Expm1CPUKernel : public CPUKernel {
public:
Expm1CPUKernel() = default;
~Expm1CPUKernel() override = default;
void InitKernel(const CNodePtr &kernelNode) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
private:
TypeId input_dtype_{kTypeUnknown};
};
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
Expm1CPUKernel);
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
Expm1CPUKernel);
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat).AddOutputAttr(kNumberTypeFloat32), Expm1CPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_

@ -1597,7 +1597,7 @@ class Expm1(PrimitiveWithInfer):
Tensor, has the same shape as the `input_x`.
Supported Platforms:
``Ascend``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([0.0, 1.0, 2.0, 4.0]), mindspore.float32)

@ -0,0 +1,53 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class NetExpm1(nn.Cell):
def __init__(self):
super(NetExpm1, self).__init__()
self.expm1 = P.Expm1()
def construct(self, x):
return self.expm1(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_expm1_op():
x = np.random.rand(3, 8).astype(np.float32)
y = np.random.rand(3, 8).astype(np.float16)
expm1 = NetExpm1()
output_x = expm1(Tensor(x, dtype=dtype.float32))
expect_x = np.expm1(x)
tol_x = 1e-6
assert (np.abs(output_x.asnumpy() - expect_x) < tol_x).all()
output_y = expm1(Tensor(y, dtype=dtype.float16))
expect_y = np.expm1(y)
tol_y = 1e-3
assert (np.abs(output_y.asnumpy() - expect_y) < tol_y).all()
Loading…
Cancel
Save