commit
9366200dba
@ -0,0 +1,66 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/expm1_cpu_kernel.h"
|
||||
#include <cmath>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void Expm1CPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but Expm1CPUKernel needs 1 inputs.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but Expm1CPUKernel needs 1 output.";
|
||||
}
|
||||
|
||||
input_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
if (input_dtype_ != kNumberTypeFloat16 && input_dtype_ != kNumberTypeFloat32 && input_dtype_ != kNumberTypeFloat) {
|
||||
MS_LOG(EXCEPTION) << "Unsupported input type found.";
|
||||
}
|
||||
}
|
||||
|
||||
bool Expm1CPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (input_dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (input_dtype_ == kNumberTypeFloat32 || input_dtype_ == kNumberTypeFloat) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support float, half, but actual data type is " << TypeIdLabel(input_dtype_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Expm1CPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
T *input = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
size_t elem_num = inputs[0]->size / sizeof(T);
|
||||
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
output[i] = exp(input[i]) - T(1);
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,53 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class Expm1CPUKernel : public CPUKernel {
|
||||
public:
|
||||
Expm1CPUKernel() = default;
|
||||
~Expm1CPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernelNode) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
TypeId input_dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
Expm1CPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
Expm1CPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(Expm1, KernelAttr().AddInputAttr(kNumberTypeFloat).AddOutputAttr(kNumberTypeFloat32), Expm1CPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_EXPM1_CPU_KERNEL_H_
|
@ -0,0 +1,53 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetExpm1(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetExpm1, self).__init__()
|
||||
self.expm1 = P.Expm1()
|
||||
|
||||
def construct(self, x):
|
||||
return self.expm1(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_expm1_op():
|
||||
x = np.random.rand(3, 8).astype(np.float32)
|
||||
y = np.random.rand(3, 8).astype(np.float16)
|
||||
|
||||
expm1 = NetExpm1()
|
||||
output_x = expm1(Tensor(x, dtype=dtype.float32))
|
||||
expect_x = np.expm1(x)
|
||||
tol_x = 1e-6
|
||||
assert (np.abs(output_x.asnumpy() - expect_x) < tol_x).all()
|
||||
|
||||
output_y = expm1(Tensor(y, dtype=dtype.float16))
|
||||
expect_y = np.expm1(y)
|
||||
tol_y = 1e-3
|
||||
assert (np.abs(output_y.asnumpy() - expect_y) < tol_y).all()
|
Loading…
Reference in new issue