!4025 Split c_api_test.cc into multiple files

Merge pull request !4025 from tony_liu2/alt
pull/4025/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit 952996c3b2

@ -88,7 +88,13 @@ SET(DE_UT_SRCS
concatenate_op_test.cc
cyclic_array_test.cc
perf_data_test.cc
c_api_test.cc
c_api_samplers_test.cc
c_api_transforms_test.cc
c_api_dataset_ops_test.cc
c_api_dataset_cifar_test.cc
c_api_dataset_coco_test.cc
c_api_dataset_voc_test.cc
c_api_datasets_test.cc
tensor_op_fusion_pass_test.cc
sliding_window_op_test.cc
epoch_ctrl_op_test.cc

@ -0,0 +1,135 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
using mindspore::dataset::dsize_t;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestCifar10Dataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10Dataset.";
// Create a Cifar10 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
std::shared_ptr<Dataset> ds = Cifar10(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCifar10DatasetFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar10DatasetFail1.";
// Create a Cifar10 Dataset
std::shared_ptr<Dataset> ds = Cifar10("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestCifar100Dataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar100Dataset.";
// Create a Cifar100 Dataset
std::string folder_path = datasets_root_path_ + "/testCifar100Data/";
std::shared_ptr<Dataset> ds = Cifar100(folder_path, RandomSampler(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("coarse_label"), row.end());
EXPECT_NE(row.find("fine_label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCifar100DatasetFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCifar100DatasetFail1.";
// Create a Cifar100 Dataset
std::shared_ptr<Dataset> ds = Cifar100("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,221 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
#include "minddata/dataset/engine/datasetops/source/voc_op.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
using mindspore::dataset::dsize_t;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestVOCSegmentation) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentation.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", {}, false, SequentialSampler(0, 3));
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct images/targets
using Tensor = mindspore::dataset::Tensor;
std::string expect_file[] = {"32", "33", "39", "32", "33", "39"};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto target = row["target"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor target shape: " << target->shape();
std::shared_ptr<Tensor> expect_image;
Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
EXPECT_EQ(*image, *expect_image);
std::shared_ptr<Tensor> expect_target;
Tensor::CreateFromFile(folder_path + "/SegmentationClass/" + expect_file[i] + ".png", &expect_target);
EXPECT_EQ(*target, *expect_target);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestVOCSegmentationError1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCSegmentationError1.";
// Create a VOC Dataset
std::map<std::string, int32_t> class_index;
class_index["car"] = 0;
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Segmentation", "train", class_index, false, RandomSampler(false, 6));
// Expect nullptr for segmentation task with class_index
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestVOCInvalidTaskOrMode) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCInvalidTaskOrMode.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds_1 = VOC(folder_path, "Classification", "train", {}, false, SequentialSampler(0, 3));
// Expect nullptr for invalid task
EXPECT_EQ(ds_1, nullptr);
std::shared_ptr<Dataset> ds_2 = VOC(folder_path, "Segmentation", "validation", {}, false, RandomSampler(false, 4));
// Expect nullptr for invalid mode
EXPECT_EQ(ds_2, nullptr);
}
TEST_F(MindDataTestPipeline, TestVOCDetection) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCDetection.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", {}, false, SequentialSampler(0, 4));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct images/labels
std::string expect_file[] = {"15", "32", "33", "39"};
uint32_t expect_num[] = {5, 5, 4, 3};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto label = row["label"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor label shape: " << label->shape();
std::shared_ptr<Tensor> expect_image;
Tensor::CreateFromFile(folder_path + "/JPEGImages/" + expect_file[i] + ".jpg", &expect_image);
EXPECT_EQ(*image, *expect_image);
std::shared_ptr<Tensor> expect_label;
Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
expect_label->SetItemAt({0, 0}, expect_num[i]);
EXPECT_EQ(*label, *expect_label);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 4);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestVOCClassIndex) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVOCClassIndex.";
// Create a VOC Dataset
std::string folder_path = datasets_root_path_ + "/testVOC2012_2";
std::map<std::string, int32_t> class_index;
class_index["car"] = 0;
class_index["cat"] = 1;
class_index["train"] = 9;
std::shared_ptr<Dataset> ds = VOC(folder_path, "Detection", "train", class_index, false, SequentialSampler(0, 6));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if VOCOp read correct labels
// When we provide class_index, label of ["car","cat","train"] become [0,1,9]
std::shared_ptr<Tensor> expect_label;
Tensor::CreateFromMemory(TensorShape({1, 1}), DataType(DataType::DE_UINT32), nullptr, &expect_label);
uint32_t expect[] = {9, 9, 9, 1, 1, 0};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto label = row["label"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor label shape: " << label->shape();
expect_label->SetItemAt({0, 0}, expect[i]);
EXPECT_EQ(*label, *expect_label);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 6);
// Manually terminate the pipeline
iter->Stop();
}

@ -0,0 +1,160 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
using mindspore::dataset::TensorImpl;
using mindspore::dataset::DataType;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
using mindspore::dataset::dsize_t;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestMnistFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestMnistFail1.";
// Create a Mnist Dataset
std::shared_ptr<Dataset> ds = Mnist("", RandomSampler(false, 10));
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestImageFolderFail1) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestImageFolderFail1.";
// Create an ImageFolder Dataset
std::shared_ptr<Dataset> ds = ImageFolder("", true, nullptr);
EXPECT_EQ(ds, nullptr);
}
TEST_F(MindDataTestPipeline, TestCelebADataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebADataset.";
// Create a CelebA Dataset
std::string folder_path = datasets_root_path_ + "/testCelebAData/";
std::shared_ptr<Dataset> ds = CelebA(folder_path, "all", SequentialSampler(0, 2), false, {});
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if CelebAOp read correct images/attr
std::string expect_file[] = {"1.JPEG", "2.jpg"};
std::vector<std::vector<uint32_t>> expect_attr_vector =
{{0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
1, 0, 0, 1}, {0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 1}};
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto attr = row["attr"];
std::shared_ptr<Tensor> expect_image;
Tensor::CreateFromFile(folder_path + expect_file[i], &expect_image);
EXPECT_EQ(*image, *expect_image);
std::shared_ptr<Tensor> expect_attr;
Tensor::CreateFromVector(expect_attr_vector[i], TensorShape({40}), &expect_attr);
EXPECT_EQ(*attr, *expect_attr);
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCelebADefault) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebADefault.";
// Create a CelebA Dataset
std::string folder_path = datasets_root_path_ + "/testCelebAData/";
std::shared_ptr<Dataset> ds = CelebA(folder_path);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
// Check if CelebAOp read correct images/attr
uint64_t i = 0;
while (row.size() != 0) {
auto image = row["image"];
auto attr = row["attr"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
MS_LOG(INFO) << "Tensor attr shape: " << attr->shape();
iter->GetNextRow(&row);
i++;
}
EXPECT_EQ(i, 2);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestCelebAException) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestCelebAException.";
// Create a CelebA Dataset
std::string folder_path = datasets_root_path_ + "/testCelebAData/";
std::string invalid_folder_path = "./testNotExist";
std::string invalid_dataset_type = "invalid_type";
std::shared_ptr<Dataset> ds = CelebA(invalid_folder_path);
EXPECT_EQ(ds, nullptr);
std::shared_ptr<Dataset> ds1 = CelebA(folder_path, invalid_dataset_type);
EXPECT_EQ(ds1, nullptr);
}

@ -0,0 +1,115 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <memory>
#include <vector>
#include <string>
#include "utils/log_adapter.h"
#include "utils/ms_utils.h"
#include "common/common.h"
#include "gtest/gtest.h"
#include "securec.h"
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/status.h"
#include "minddata/dataset/include/transforms.h"
#include "minddata/dataset/include/iterator.h"
#include "minddata/dataset/core/constants.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/include/samplers.h"
using namespace mindspore::dataset::api;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
using mindspore::dataset::Tensor;
using mindspore::dataset::Status;
using mindspore::dataset::BorderType;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestPipeline, TestImageFolderWithSamplers) {
std::shared_ptr<SamplerObj> sampl = DistributedSampler(2, 1);
EXPECT_NE(sampl, nullptr);
sampl = PKSampler(3);
EXPECT_NE(sampl, nullptr);
sampl = RandomSampler(false, 12);
EXPECT_NE(sampl, nullptr);
sampl = SequentialSampler(0, 12);
EXPECT_NE(sampl, nullptr);
std::vector<double> weights = {0.9, 0.8, 0.68, 0.7, 0.71, 0.6, 0.5, 0.4, 0.3, 0.5, 0.2, 0.1};
sampl = WeightedRandomSampler(weights, 12);
EXPECT_NE(sampl, nullptr);
std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
sampl = SubsetRandomSampler(indices);
EXPECT_NE(sampl, nullptr);
// Create an ImageFolder Dataset
std::string folder_path = datasets_root_path_ + "/testPK/data/";
std::shared_ptr<Dataset> ds = ImageFolder(folder_path, false, sampl);
EXPECT_NE(ds, nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 2;
ds = ds->Repeat(repeat_num);
EXPECT_NE(ds, nullptr);
// Create a Batch operation on ds
int32_t batch_size = 2;
ds = ds->Batch(batch_size);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
iter->GetNextRow(&row);
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image->shape();
iter->GetNextRow(&row);
}
EXPECT_EQ(i, 12);
// Manually terminate the pipeline
iter->Stop();
}
TEST_F(MindDataTestPipeline, TestSamplersMoveParameters) {
std::vector<int64_t> indices = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23};
std::shared_ptr<SamplerObj> sampl1 = SubsetRandomSampler(indices);
EXPECT_FALSE(indices.empty());
EXPECT_NE(sampl1->Build(), nullptr);
std::shared_ptr<SamplerObj> sampl2 = SubsetRandomSampler(std::move(indices));
EXPECT_TRUE(indices.empty());
EXPECT_NE(sampl2->Build(), nullptr);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save