!2226 add adam op for wide&deep model
Merge pull request !2226 from zyli2020/add_adam_oppull/2226/MERGE
commit
95d887a35b
@ -0,0 +1,56 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/cuda_impl/adam_impl.cuh"
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T SqrtFunc(T input) {
|
||||
return sqrt(input);
|
||||
}
|
||||
|
||||
template <>
|
||||
__device__ __forceinline__ half SqrtFunc(half input) {
|
||||
return hsqrt(input);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void ApplyAdamKernel(const size_t size, const T *gradient, const T *beta1_power, const T *beta2_power,
|
||||
const T *learning_rate, const T *beta1, const T *beta2, const T *epsilon, T *variable,
|
||||
T *m, T *v) {
|
||||
const T one = static_cast<T>(1.0);
|
||||
const T new_learning_rate = learning_rate[0] * SqrtFunc(one - beta2_power[0]) / (one - beta1_power[0]);
|
||||
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||
m[i] += (gradient[i] - m[i]) * (one - beta1[0]);
|
||||
v[i] += (gradient[i] * gradient[i] - v[i]) * (one - beta2[0]);
|
||||
variable[i] -= new_learning_rate * m[i] / (SqrtFunc(v[i]) + epsilon[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ApplyAdam(const size_t size, const T *gradient, const T *beta1_power, const T *beta2_power, const T *learning_rate,
|
||||
const T *beta1, const T *beta2, const T *epsilon, T *variable, T *m, T *v, cudaStream_t cuda_stream) {
|
||||
ApplyAdamKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(
|
||||
size, gradient, beta1_power, beta2_power, learning_rate, beta1, beta2, epsilon, variable, m, v);
|
||||
}
|
||||
|
||||
template void ApplyAdam<float>(const size_t size, const float *gradient, const float *beta1_power,
|
||||
const float *beta2_power, const float *learning_rate, const float *beta1,
|
||||
const float *beta2, const float *epsilon, float *variable, float *m, float *v,
|
||||
cudaStream_t cuda_stream);
|
||||
template void ApplyAdam<half>(const size_t size, const half *gradient, const half *beta1_power, const half *beta2_power,
|
||||
const half *learning_rate, const half *beta1, const half *beta2, const half *epsilon,
|
||||
half *variable, half *m, half *v, cudaStream_t cuda_stream);
|
@ -0,0 +1,25 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ADAM_IMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ADAM_IMPL_H_
|
||||
|
||||
#include "device/gpu/cuda_common.h"
|
||||
template <typename T>
|
||||
void ApplyAdam(const size_t size, const T *gradient, const T *beta1_power, const T *beta2_power, const T *learning_rate,
|
||||
const T *beta1, const T *beta2, const T *epsilon, T *variable, T *m, T *v, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ADAM_IMPL_H_
|
@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/adam_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(Adam,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
AdamGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(Adam,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
AdamGpuKernel, half)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,142 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_ADAM_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_ADAM_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/adam_impl.cuh"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class AdamGpuKernel : public GpuKernel {
|
||||
public:
|
||||
AdamGpuKernel()
|
||||
: variable_size_(0),
|
||||
m_size_(0),
|
||||
v_size_(0),
|
||||
beta1_power_size_(0),
|
||||
beta2_power_size_(0),
|
||||
learning_rate_size_(0),
|
||||
beta1_size_(0),
|
||||
beta2_size_(0),
|
||||
epsilon_size_(0),
|
||||
gradient_size_(0) {}
|
||||
|
||||
~AdamGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
void *stream_ptr) override {
|
||||
T *variable = GetDeviceAddress<T>(inputs, 0);
|
||||
T *m = GetDeviceAddress<T>(inputs, 1);
|
||||
T *v = GetDeviceAddress<T>(inputs, 2);
|
||||
T *beta1_power = GetDeviceAddress<T>(inputs, 3);
|
||||
T *beta2_power = GetDeviceAddress<T>(inputs, 4);
|
||||
T *learning_rate = GetDeviceAddress<T>(inputs, 5);
|
||||
T *beta1 = GetDeviceAddress<T>(inputs, 6);
|
||||
T *beta2 = GetDeviceAddress<T>(inputs, 7);
|
||||
T *epsilon = GetDeviceAddress<T>(inputs, 8);
|
||||
T *gradient = GetDeviceAddress<T>(inputs, 9);
|
||||
ApplyAdam(inputs[0]->size / sizeof(T), gradient, beta1_power, beta2_power, learning_rate, beta1, beta2, epsilon,
|
||||
variable, m, v, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 10) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but ftrl needs 10 inputs.";
|
||||
return false;
|
||||
}
|
||||
|
||||
variable_size_ = sizeof(T);
|
||||
m_size_ = sizeof(T);
|
||||
v_size_ = sizeof(T);
|
||||
beta1_power_size_ = sizeof(T);
|
||||
beta2_power_size_ = sizeof(T);
|
||||
learning_rate_size_ = sizeof(T);
|
||||
beta1_size_ = sizeof(T);
|
||||
beta2_size_ = sizeof(T);
|
||||
epsilon_size_ = sizeof(T);
|
||||
gradient_size_ = sizeof(T);
|
||||
|
||||
auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < variable_shape.size(); i++) {
|
||||
variable_size_ *= variable_shape[i];
|
||||
}
|
||||
|
||||
auto m_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
for (size_t i = 0; i < m_shape.size(); i++) {
|
||||
m_size_ *= m_shape[i];
|
||||
}
|
||||
|
||||
auto v_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
for (size_t i = 0; i < v_shape.size(); i++) {
|
||||
v_size_ *= v_shape[i];
|
||||
}
|
||||
|
||||
auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 9);
|
||||
for (size_t i = 0; i < gradient_shape.size(); i++) {
|
||||
gradient_size_ *= gradient_shape[i];
|
||||
}
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(variable_size_);
|
||||
input_size_list_.push_back(m_size_);
|
||||
input_size_list_.push_back(v_size_);
|
||||
input_size_list_.push_back(beta1_power_size_);
|
||||
input_size_list_.push_back(beta2_power_size_);
|
||||
input_size_list_.push_back(learning_rate_size_);
|
||||
input_size_list_.push_back(beta1_size_);
|
||||
input_size_list_.push_back(beta2_size_);
|
||||
input_size_list_.push_back(epsilon_size_);
|
||||
input_size_list_.push_back(gradient_size_);
|
||||
output_size_list_.push_back(0);
|
||||
output_size_list_.push_back(0);
|
||||
output_size_list_.push_back(0);
|
||||
}
|
||||
|
||||
private:
|
||||
size_t variable_size_;
|
||||
size_t m_size_;
|
||||
size_t v_size_;
|
||||
size_t beta1_power_size_;
|
||||
size_t beta2_power_size_;
|
||||
size_t learning_rate_size_;
|
||||
size_t beta1_size_;
|
||||
size_t beta2_size_;
|
||||
size_t epsilon_size_;
|
||||
size_t gradient_size_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_ADAM_GPU_KERNEL_H_
|
@ -0,0 +1,78 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Adam
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class NetAdam(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAdam, self).__init__()
|
||||
self.batch_size = 1
|
||||
self.reshape = P.Reshape()
|
||||
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
|
||||
self.fc1 = Dense(16, 10, weight_init=weight)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.reshape(input_x, (self.batch_size, -1))
|
||||
output = self.fc1(output)
|
||||
return output
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_adam():
|
||||
epoch = 3
|
||||
net = NetAdam()
|
||||
optimizer = Adam(filter(lambda x: x.requires_grad,
|
||||
net.get_parameters()), learning_rate=0.01)
|
||||
criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
net_with_criterion = WithLossCell(net, criterion)
|
||||
train_network = TrainOneStepCell(
|
||||
net_with_criterion, optimizer)
|
||||
train_network.set_train()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
losses1 = []
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(
|
||||
1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses1.append(loss.asnumpy())
|
||||
assert losses1[0] > losses1[1]
|
||||
assert losses1[1] > losses1[2]
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
losses2 = []
|
||||
for _ in range(epoch):
|
||||
data = Tensor(np.arange(0, 16).reshape(
|
||||
1, 1, 4, 4).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.array([0]).astype(np.int32))
|
||||
loss = train_network(data, label)
|
||||
losses2.append(loss.asnumpy())
|
||||
assert losses2[0] > losses2[1]
|
||||
assert losses2[1] > losses2[2]
|
Loading…
Reference in new issue