parent
ba351d9648
commit
95dbfe0636
@ -0,0 +1,42 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Dropout2D op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
dropout2d_op_info = AiCPURegOp("Dropout2D") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.output(1, "mask", "required") \
|
||||
.attr("keep_prob", "float") \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(dropout2d_op_info)
|
||||
def _dropout2d_aicpu():
|
||||
"""Dropout2D AiCPU register"""
|
||||
return
|
@ -0,0 +1,69 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
dtype = np.float16
|
||||
x0 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype))
|
||||
x1 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype))
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_prob):
|
||||
super(Net, self).__init__()
|
||||
self.drop = P.Dropout2D(keep_prob=keep_prob)
|
||||
|
||||
def construct(self, x):
|
||||
return self.drop(x)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.grad(self.network)(x, y)
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
net = Net(0.7)
|
||||
output, mask = net(x0)
|
||||
print(x0)
|
||||
print(output)
|
||||
|
||||
y = (output.asnumpy() == (x0.asnumpy()/0.7).astype(dtype)).reshape(3*4, 3*3)
|
||||
output_reshape = output.asnumpy().reshape(3*4, 3*3)
|
||||
for i in range(3*4):
|
||||
if not y[i].all():
|
||||
assert output_reshape[i].sum() == 0
|
||||
return output, mask
|
||||
|
||||
|
||||
def test_net_grad():
|
||||
net = Grad(Net(0.7))
|
||||
y = test_net_float32()
|
||||
output = net(x1, y)
|
||||
print("input: ", x1)
|
||||
print("forward output: ", y)
|
||||
print("backward output: ", output)
|
Loading…
Reference in new issue