pull/6411/head
parent
0e60ed8927
commit
970490a6f0
@ -0,0 +1,73 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x)
|
||||
return self.loss(predict)
|
||||
|
||||
class GradWarp(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWarp, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
def test_triangle_strategy_consistency():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.mul1 = P.Mul().shard(((2, 4), (2, 4)))
|
||||
self.mul2 = P.Mul()
|
||||
self.ba1 = P.BiasAdd()
|
||||
self.weight = Parameter(Tensor(np.ones([128, 1000]), dtype=ms.float32), name="weight")
|
||||
self.bias = Parameter(Tensor(np.ones([1000]), dtype=ms.float32), name="bias")
|
||||
self.add = P.TensorAdd().shard(((1, 8), (1, 8)))
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
out = self.mul1(x, self.weight)
|
||||
mul_out = self.mul2(out, self.weight)
|
||||
ba_out = self.ba1(out, self.bias)
|
||||
ta_out = self.add(mul_out, ba_out)
|
||||
out = self.relu(ta_out)
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([128, 1000]), dtype=ms.float32)
|
||||
net = NetWithLoss(Net())
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
_executor.compile(net, x, phase='train')
|
Loading…
Reference in new issue