add range op

pull/8322/head
yangzhenzhang 4 years ago
parent 5708bae7e7
commit 9747bde861

@ -135,6 +135,7 @@ REGISTER(EluInfo);
REGISTER(ReLUInfo);
REGISTER(RepeatElementsInfo);
REGISTER(TensorDotInfo);
REGISTER(RangeInfo);
REGISTER(ReLU6Info);
REGISTER(ReLUV2Info);
REGISTER(SoftplusInfo);

@ -43,6 +43,7 @@
#include "frontend/parallel/ops_info/concat_info.h"
#include "frontend/parallel/ops_info/split_info.h"
#include "frontend/parallel/ops_info/tensordot_info.h"
#include "frontend/parallel/ops_info/range_info.h"
#include "frontend/parallel/ops_info/pack_info.h"
#include "frontend/parallel/ops_info/broadcast_to_info.h"
#include "frontend/parallel/ops_info/unique_info.h"

@ -104,6 +104,9 @@ constexpr char GROUP[] = "group";
constexpr char FUSION[] = "fusion";
constexpr char AXIS[] = "axis";
constexpr char AXES[] = "axes";
constexpr char START[] = "start";
constexpr char LIMIT[] = "limit";
constexpr char DELTA[] = "delta";
constexpr char OUTPUT_NUM[] = "output_num";
constexpr char SPLIT_COUNT[] = "split_count";
constexpr char SPLIT_DIM[] = "split_dim";
@ -193,6 +196,7 @@ constexpr char SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS[] = "SparseSoftmaxCrossE
constexpr char RELU[] = "ReLU";
constexpr char REPEAT_ELEMENTS[] = "RepeatElements";
constexpr char TENSOR_DOT[] = "TensorDot";
constexpr char RANGE[] = "Range";
constexpr char ONEHOT[] = "OneHot";
constexpr char DROPOUT_DO_MASK[] = "DropoutDoMask";
constexpr char DROPOUT_GEN_MASK[] = "DropoutGenMask";

@ -0,0 +1,214 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/range_info.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/graph_costmodel.h"
#include "frontend/parallel/device_manager.h"
#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
#include "frontend/parallel/graph_util/generate_graph.h"
namespace mindspore {
namespace parallel {
float RangeInfo::GetRangeAttr(const std::string &arg) {
auto iter = attrs_.find(arg);
if (iter == attrs_.end()) {
MS_LOG(EXCEPTION) << name_ << ": Can not find the attr for " << arg;
}
MS_EXCEPTION_IF_NULL(iter->second);
if (!iter->second->isa<FP32Imm>()) {
MS_LOG(EXCEPTION) << name_ << ": The type of attr is not float, the attr is " << arg;
}
return iter->second->cast<FP32ImmPtr>()->value();
}
Status RangeInfo::GetAttrs() {
start_ = GetRangeAttr(START);
limit_ = GetRangeAttr(LIMIT);
delta_ = GetRangeAttr(DELTA);
MS_LOG(INFO) << name_ << ": The start is " << start_ << ", the limit is " << limit_ << ", the delta is " << delta_;
return SUCCESS;
}
Status RangeInfo::CheckStrategy(const StrategyPtr &strategy) {
MS_EXCEPTION_IF_NULL(strategy);
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy";
return FAILED;
}
return SUCCESS;
}
Status RangeInfo::InferDevMatrixShape() {
Strategys stra = strategy_->GetInputDim();
dev_matrix_shape_ = stra[0];
split_num_ = stra[0][0];
return SUCCESS;
}
Status RangeInfo::InferMirrorOps() { return SUCCESS; }
Status RangeInfo::InferForwardCommunication() { return SUCCESS; }
Status RangeInfo::InferTensorMap() {
TensorMap input_tensor_map = {0}, output_tensor_map = {0};
inputs_tensor_map_.push_back(input_tensor_map);
outputs_tensor_map_.push_back(output_tensor_map);
return SUCCESS;
}
Status RangeInfo::InferTensorInfo() {
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": Invalid args";
return FAILED;
}
TensorLayout input_layout, output_layout;
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
// infer tensor layout
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
return FAILED;
}
TensorInfo input_tensor_info(input_layout);
inputs_tensor_info_.push_back(input_tensor_info);
}
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_layout);
outputs_tensor_info_.push_back(output_tensor_info);
for (auto &tensor_info : inputs_tensor_info_) {
MS_LOG(INFO) << name_ << ": The input layout: " << tensor_info.tensor_layout().ToString();
}
MS_LOG(INFO) << name_ << ": The output layout: " << outputs_tensor_info_[0].tensor_layout().ToString();
return SUCCESS;
}
Status RangeInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init failed";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init success";
return SUCCESS;
}
Status RangeInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init for cost model failed";
return FAILED;
}
MS_LOG(INFO) << name_ << ": Init for cost model success";
return SUCCESS;
}
Status RangeInfo::InferNewAttr() {
CheckGlobalDeviceManager();
int64_t rank = g_device_manager->global_rank();
// If repeated calculation and repeated num as the last dimension of dev-matrix,
// the dev-matrix is [split_num_, repeated_calc_num_], so from rank 0 to rank repeated_calc_num_
// are repeated calculation, and these rank have the same 'new_start_'.
// If repeated calculation and repeated num as the first dimension of dev-matrix,
// the dev-matrix is [repeated_calc_num_, split_num_], so rank 0 and rank split_num_ and so on
// are repeated calculation, and these rank have the same 'new_start_'.
float start_bias = inputs_shape_[0][0] / split_num_ * delta_;
if (repeated_num_in_dev_matrix_right_) {
new_start_ = start_ + start_bias * (rank / repeated_calc_num_);
} else {
new_start_ = start_ + start_bias * (rank % split_num_);
}
new_limit_ = new_start_ + start_bias;
MS_LOG(INFO) << name_ << ": The new start is " << new_start_ << ", the new limit is " << new_limit_;
return SUCCESS;
}
Status RangeInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
GenerateGraph gen_g = GenerateGraph();
if (gen_g.Init(cnode) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": GenerateGraph Init failed";
return FAILED;
}
if (InferNewAttr() != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Infer new attr failed";
return FAILED;
}
Attr attr_start = std::make_pair(START, MakeValue(new_start_));
Attr attr_limit = std::make_pair(LIMIT, MakeValue(new_limit_));
Attr attr_delta = std::make_pair(DELTA, MakeValue(delta_));
OperatorAttrs attrs = {attr_start, attr_limit, attr_delta};
auto new_range_op = gen_g.PushBack({gen_g.NewOpInst(RANGE, attrs), gen_g.virtual_input_node()});
std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(new_range_op, 1)};
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>(
std::make_pair(input_nodes, new_range_op));
return SUCCESS;
}
ReplaceGraphPtr RangeInfo::replace_graph(const CNodePtr &cnode) {
if (ComputeReplaceGraph(cnode) != SUCCESS) {
MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed.";
}
return replace_graph_;
}
Status RangeInfo::GenerateStrategies(int64_t stage_id) {
Shape input0_split(inputs_shape_[0].size(), 1);
Shapes splittable_inputs = {input0_split};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate strategies for independent inputs() failed.";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy";
PrintStrategy(sp);
}
}
return SUCCESS;
}
Status RangeInfo::SetCostUnderStrategy(const mindspore::parallel::StrategyPtr &strategy) {
return SetCostUnderStrategyBase(strategy);
}
} // namespace parallel
} // namespace mindspore

@ -0,0 +1,73 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "utils/ms_utils.h"
#include "ir/value.h"
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
// Range op:
// (start=8.0, limit=16.0, delta=1.0) -> [8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
// (start=8.0, limit=None, delta=1.0) -> [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
// when entering the step_parallel, the limit=None has been processed
// the parallel op need to modify the 'start' and 'limit'
class RangeInfo : public OperatorInfo {
public:
RangeInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<ActivationCost>(true)) {}
~RangeInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int64_t stage_id) override;
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
protected:
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferMirrorOps() override;
Status InferForwardCommunication() override;
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferTensorMap() override;
Status GetAttrs() override;
Status InferNewAttr();
float GetRangeAttr(const std::string &arg);
Status ComputeReplaceGraph(const CNodePtr &cnode);
float start_ = 0.0;
float limit_ = 0.0;
float delta_ = 0.0;
float new_start_ = 0.0;
float new_limit_ = 0.0;
int64_t split_num_ = 1;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_

@ -316,7 +316,7 @@ bool IsSplittableOperator(const std::string &op_name) {
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE, UNSORTED_SEGMENT_SUM,
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT};
UNSORTED_SEGMENT_MIN, REPEAT_ELEMENTS, TENSOR_DOT, RANGE};
// clang-format on
auto iter = splittable_op.find(op_name);

@ -0,0 +1,102 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, weight, start, limit, delta, strategy1=None, strategy2=None, strategy3=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.range = nn.Range(start, limit, delta)
self.range.range_x.shard(strategy2)
self.mul2 = P.Mul().shard(strategy3)
self.weight = Parameter(weight, "w")
def construct(self, x, b):
r_out = self.range()
out = self.mul(x, self.weight)
out = self.mul2(out, r_out)
return out
dev_num = 4
_x = Tensor(np.ones([64 // dev_num, 8]), dtype=ms.float32)
_b = Tensor(np.ones([8]), dtype=ms.float32)
_w1 = Tensor(np.ones([64, 8]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_range():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=2)
strategy1 = ((2, 2), (2, 2))
strategy2 = ((2,),)
strategy3 = ((2, 2), (2,))
net = Net(_w1, 0, 8, 1, strategy1, strategy2, strategy3)
compile_net(net)
def test_range2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=0)
strategy1 = ((4, 1), (4, 1))
strategy2 = ((1,),)
strategy3 = ((4, 1), (1,))
net = Net(_w1, 0.0, 4.0, 0.5, strategy1, strategy2, strategy3)
compile_net(net)
def test_range3():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=dev_num, global_rank=2)
net = Net(_w1, 4.0, None, 0.5)
compile_net(net)
Loading…
Cancel
Save