parent
5708bae7e7
commit
9747bde861
@ -0,0 +1,214 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "frontend/parallel/ops_info/range_info.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <numeric>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/graph_costmodel.h"
|
||||
#include "frontend/parallel/device_manager.h"
|
||||
#include "frontend/parallel/device_matrix.h"
|
||||
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
|
||||
#include "frontend/parallel/graph_util/generate_graph.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
float RangeInfo::GetRangeAttr(const std::string &arg) {
|
||||
auto iter = attrs_.find(arg);
|
||||
if (iter == attrs_.end()) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": Can not find the attr for " << arg;
|
||||
}
|
||||
|
||||
MS_EXCEPTION_IF_NULL(iter->second);
|
||||
if (!iter->second->isa<FP32Imm>()) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": The type of attr is not float, the attr is " << arg;
|
||||
}
|
||||
|
||||
return iter->second->cast<FP32ImmPtr>()->value();
|
||||
}
|
||||
|
||||
Status RangeInfo::GetAttrs() {
|
||||
start_ = GetRangeAttr(START);
|
||||
limit_ = GetRangeAttr(LIMIT);
|
||||
delta_ = GetRangeAttr(DELTA);
|
||||
MS_LOG(INFO) << name_ << ": The start is " << start_ << ", the limit is " << limit_ << ", the delta is " << delta_;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::CheckStrategy(const StrategyPtr &strategy) {
|
||||
MS_EXCEPTION_IF_NULL(strategy);
|
||||
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid strategy";
|
||||
return FAILED;
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::InferDevMatrixShape() {
|
||||
Strategys stra = strategy_->GetInputDim();
|
||||
dev_matrix_shape_ = stra[0];
|
||||
split_num_ = stra[0][0];
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::InferMirrorOps() { return SUCCESS; }
|
||||
|
||||
Status RangeInfo::InferForwardCommunication() { return SUCCESS; }
|
||||
|
||||
Status RangeInfo::InferTensorMap() {
|
||||
TensorMap input_tensor_map = {0}, output_tensor_map = {0};
|
||||
|
||||
inputs_tensor_map_.push_back(input_tensor_map);
|
||||
outputs_tensor_map_.push_back(output_tensor_map);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::InferTensorInfo() {
|
||||
if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) {
|
||||
MS_LOG(ERROR) << name_ << ": Invalid args";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
TensorLayout input_layout, output_layout;
|
||||
for (size_t i = 0; i < inputs_shape_.size(); ++i) {
|
||||
// infer tensor layout
|
||||
if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[i], inputs_shape_[i]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo input_tensor_info(input_layout);
|
||||
inputs_tensor_info_.push_back(input_tensor_info);
|
||||
}
|
||||
|
||||
if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed.";
|
||||
return FAILED;
|
||||
}
|
||||
TensorInfo output_tensor_info(output_layout);
|
||||
outputs_tensor_info_.push_back(output_tensor_info);
|
||||
|
||||
for (auto &tensor_info : inputs_tensor_info_) {
|
||||
MS_LOG(INFO) << name_ << ": The input layout: " << tensor_info.tensor_layout().ToString();
|
||||
}
|
||||
MS_LOG(INFO) << name_ << ": The output layout: " << outputs_tensor_info_[0].tensor_layout().ToString();
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::Init(const StrategyPtr &strategy) {
|
||||
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init success";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::InitForCostModel(const StrategyPtr &strategy) {
|
||||
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Init for cost model failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << name_ << ": Init for cost model success";
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::InferNewAttr() {
|
||||
CheckGlobalDeviceManager();
|
||||
int64_t rank = g_device_manager->global_rank();
|
||||
|
||||
// If repeated calculation and repeated num as the last dimension of dev-matrix,
|
||||
// the dev-matrix is [split_num_, repeated_calc_num_], so from rank 0 to rank repeated_calc_num_
|
||||
// are repeated calculation, and these rank have the same 'new_start_'.
|
||||
// If repeated calculation and repeated num as the first dimension of dev-matrix,
|
||||
// the dev-matrix is [repeated_calc_num_, split_num_], so rank 0 and rank split_num_ and so on
|
||||
// are repeated calculation, and these rank have the same 'new_start_'.
|
||||
float start_bias = inputs_shape_[0][0] / split_num_ * delta_;
|
||||
if (repeated_num_in_dev_matrix_right_) {
|
||||
new_start_ = start_ + start_bias * (rank / repeated_calc_num_);
|
||||
} else {
|
||||
new_start_ = start_ + start_bias * (rank % split_num_);
|
||||
}
|
||||
|
||||
new_limit_ = new_start_ + start_bias;
|
||||
MS_LOG(INFO) << name_ << ": The new start is " << new_start_ << ", the new limit is " << new_limit_;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
||||
GenerateGraph gen_g = GenerateGraph();
|
||||
if (gen_g.Init(cnode) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": GenerateGraph Init failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
if (InferNewAttr() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Infer new attr failed";
|
||||
return FAILED;
|
||||
}
|
||||
|
||||
Attr attr_start = std::make_pair(START, MakeValue(new_start_));
|
||||
Attr attr_limit = std::make_pair(LIMIT, MakeValue(new_limit_));
|
||||
Attr attr_delta = std::make_pair(DELTA, MakeValue(delta_));
|
||||
OperatorAttrs attrs = {attr_start, attr_limit, attr_delta};
|
||||
auto new_range_op = gen_g.PushBack({gen_g.NewOpInst(RANGE, attrs), gen_g.virtual_input_node()});
|
||||
std::vector<std::pair<AnfNodePtr, int64_t>> input_nodes = {std::make_pair(new_range_op, 1)};
|
||||
replace_graph_ = std::make_shared<std::pair<std::vector<std::pair<AnfNodePtr, int64_t>>, AnfNodePtr>>(
|
||||
std::make_pair(input_nodes, new_range_op));
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
ReplaceGraphPtr RangeInfo::replace_graph(const CNodePtr &cnode) {
|
||||
if (ComputeReplaceGraph(cnode) != SUCCESS) {
|
||||
MS_LOG(EXCEPTION) << name_ << ": ComputeReplaceGraph failed.";
|
||||
}
|
||||
return replace_graph_;
|
||||
}
|
||||
|
||||
Status RangeInfo::GenerateStrategies(int64_t stage_id) {
|
||||
Shape input0_split(inputs_shape_[0].size(), 1);
|
||||
Shapes splittable_inputs = {input0_split};
|
||||
|
||||
std::vector<StrategyPtr> sp_vector;
|
||||
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": Generate strategies for independent inputs() failed.";
|
||||
return FAILED;
|
||||
}
|
||||
size_t success = 0;
|
||||
for (auto &sp : sp_vector) {
|
||||
if (SetCostUnderStrategy(sp) == SUCCESS) {
|
||||
success++;
|
||||
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy";
|
||||
PrintStrategy(sp);
|
||||
}
|
||||
}
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status RangeInfo::SetCostUnderStrategy(const mindspore::parallel::StrategyPtr &strategy) {
|
||||
return SetCostUnderStrategyBase(strategy);
|
||||
}
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
@ -0,0 +1,73 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_
|
||||
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#include "utils/ms_utils.h"
|
||||
#include "ir/value.h"
|
||||
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
|
||||
#include "frontend/parallel/ops_info/operator_info.h"
|
||||
#include "frontend/parallel/strategy.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace parallel {
|
||||
// Range op:
|
||||
// (start=8.0, limit=16.0, delta=1.0) -> [8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]
|
||||
// (start=8.0, limit=None, delta=1.0) -> [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
|
||||
// when entering the step_parallel, the limit=None has been processed
|
||||
// the parallel op need to modify the 'start' and 'limit'
|
||||
class RangeInfo : public OperatorInfo {
|
||||
public:
|
||||
RangeInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
|
||||
const PrimitiveAttrs &attrs)
|
||||
: OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<ActivationCost>(true)) {}
|
||||
~RangeInfo() override = default;
|
||||
|
||||
Status Init(const StrategyPtr &strategy) override;
|
||||
Status InitForCostModel(const StrategyPtr &strategy) override;
|
||||
|
||||
Status GenerateStrategies(int64_t stage_id) override;
|
||||
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
|
||||
ReplaceGraphPtr replace_graph(const CNodePtr &cnode) override;
|
||||
|
||||
protected:
|
||||
Status CheckStrategy(const StrategyPtr &strategy) override;
|
||||
Status InferMirrorOps() override;
|
||||
Status InferForwardCommunication() override;
|
||||
Status InferTensorInfo() override;
|
||||
Status InferDevMatrixShape() override;
|
||||
Status InferTensorMap() override;
|
||||
Status GetAttrs() override;
|
||||
Status InferNewAttr();
|
||||
float GetRangeAttr(const std::string &arg);
|
||||
Status ComputeReplaceGraph(const CNodePtr &cnode);
|
||||
|
||||
float start_ = 0.0;
|
||||
float limit_ = 0.0;
|
||||
float delta_ = 0.0;
|
||||
float new_start_ = 0.0;
|
||||
float new_limit_ = 0.0;
|
||||
int64_t split_num_ = 1;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_RANGE_INFO_H_
|
@ -0,0 +1,102 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
class Dataset(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(Dataset, self).__init__(size=length)
|
||||
self.predict = predict
|
||||
self.label = label
|
||||
self.index = 0
|
||||
self.length = length
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.index >= self.length:
|
||||
raise StopIteration
|
||||
self.index += 1
|
||||
return self.predict, self.label
|
||||
|
||||
def reset(self):
|
||||
self.index = 0
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, weight, start, limit, delta, strategy1=None, strategy2=None, strategy3=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.range = nn.Range(start, limit, delta)
|
||||
self.range.range_x.shard(strategy2)
|
||||
self.mul2 = P.Mul().shard(strategy3)
|
||||
self.weight = Parameter(weight, "w")
|
||||
|
||||
|
||||
def construct(self, x, b):
|
||||
r_out = self.range()
|
||||
out = self.mul(x, self.weight)
|
||||
out = self.mul2(out, r_out)
|
||||
return out
|
||||
|
||||
dev_num = 4
|
||||
_x = Tensor(np.ones([64 // dev_num, 8]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([8]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([64, 8]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(save_graphs=True)
|
||||
learning_rate = 0.1
|
||||
momentum = 0.9
|
||||
epoch_size = 2
|
||||
dataset = Dataset(_x, _b)
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, optimizer=opt)
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_range():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=2)
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((2,),)
|
||||
strategy3 = ((2, 2), (2,))
|
||||
net = Net(_w1, 0, 8, 1, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_range2():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=dev_num, global_rank=0)
|
||||
strategy1 = ((4, 1), (4, 1))
|
||||
strategy2 = ((1,),)
|
||||
strategy3 = ((4, 1), (1,))
|
||||
net = Net(_w1, 0.0, 4.0, 0.5, strategy1, strategy2, strategy3)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_range3():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=dev_num, global_rank=2)
|
||||
net = Net(_w1, 4.0, None, 0.5)
|
||||
compile_net(net)
|
Loading…
Reference in new issue