!5943 [MSLITE][Develop] Refactor SpaceToBatchND and add fp16 kernel

Merge pull request !5943 from sunsuodong/space_to_batch_nd
pull/5943/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 977918178d

@ -15,17 +15,14 @@
*/
#include "nnacl/fp32/space_to_batch.h"
#include "nnacl/arithmetic_common.h"
#include "nnacl/errorcode.h"
#include "nnacl/op_base.h"
void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter *param, int *in_shape,
int *out_shape) {
void DoSpaceToBatchNHWC(const float *input, float *output, int *block_sizes, int *in_shape, int *out_shape) {
int out_dim0 = out_shape[0];
int out_dim1 = out_shape[1];
int out_dim2 = out_shape[2];
int copy_num = out_shape[3];
int block_w = param->block_sizes_[1];
int block_h = param->block_sizes_[0];
int block_w = block_sizes[1];
int block_h = block_sizes[0];
int in_strides[4];
ComputeStrides(in_shape, in_strides, 4);
int out_strides[4];
@ -48,8 +45,7 @@ void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter
}
}
void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape,
const float *pedding_h_data, const float *pedding_w_data) {
void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape) {
int in_h = in_shape[1];
int in_w = in_shape[2];
int in_c = in_shape[3];
@ -67,13 +63,13 @@ void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape,
for (int i = 0; i < in_shape[0]; ++i) {
size_t in_offset0 = i * in_strides[0];
for (int pad_h_top = 0; pad_h_top < padding[0]; ++pad_h_top) {
memcpy(output + out_offset, pedding_h_data, ped_h_size);
memset(output + out_offset, 0, ped_h_size);
out_offset += ped_h_num;
}
for (int j = 0; j < in_h; ++j) {
size_t in_offset1 = in_offset0 + j * in_strides[1];
for (int pad_w_left = 0; pad_w_left < padding[2]; ++pad_w_left) {
memcpy(output + out_offset, pedding_w_data, ped_w_size);
memset(output + out_offset, 0, ped_w_size);
out_offset += out_c;
}
for (int k = 0; k < in_w; ++k) {
@ -82,12 +78,12 @@ void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape,
out_offset += in_c;
}
for (int pad_w_right = 0; pad_w_right < padding[3]; ++pad_w_right) {
memcpy(output + out_offset, pedding_w_data, ped_w_size);
memset(output + out_offset, 0, ped_w_size);
out_offset += out_c;
}
}
for (int pad_h_bottom = 0; pad_h_bottom < padding[1]; ++pad_h_bottom) {
memcpy(output + out_offset, pedding_h_data, ped_h_size);
memset(output + out_offset, 0, ped_h_size);
out_offset += ped_h_num;
}
}

@ -17,21 +17,21 @@
#define MINDSPORE_LITE_SRC_BACKEND_ARM_NNACL_FP32_SPACE_TO_BATCH_H_
#include "nnacl/op_base.h"
#define SPACE_TO_BATCH_BLOCK_SIZES_SIZE 2
#define SPACE_TO_BATCH_PADDINGS_SIZE 4
typedef struct SpaceToBatchParameter {
OpParameter op_parameter_;
bool need_paddings_;
int block_sizes_[4];
int paddings_[4];
int input_shape_[4];
int output_shape_[4];
int padded_in_shape_[4];
int padded_input_element_num;
} SpaceToBatchParameter;
#ifdef __cplusplus
extern "C" {
#endif
void DoSpaceToBatchNHWC(const float *input, float *output, SpaceToBatchParameter *param, int *in_shape, int *out_shape);
void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape,
const float *pedding_h_data, const float *pedding_w_data);
void DoSpaceToBatchNHWC(const float *input, float *output, int *block_sizes, int *in_shape, int *out_shape);
void DoSpaceToBatchPaddingNHWC(const float *input, float *output, int *in_shape, int *padding, int *out_shape);
#ifdef __cplusplus
}
#endif

@ -0,0 +1,91 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/int8/space_to_batch_int8.h"
#include "nnacl/arithmetic_common.h"
void DoSpaceToBatchNHWCInt8(const int8_t *input, int8_t *output, int *block_sizes, int *in_shape,
int *out_shape) {
int out_dim0 = out_shape[0];
int out_dim1 = out_shape[1];
int out_dim2 = out_shape[2];
int copy_num = out_shape[3];
int block_w = block_sizes[1];
int block_h = block_sizes[0];
int in_strides[4];
ComputeStrides(in_shape, in_strides, 4);
int out_strides[4];
ComputeStrides(out_shape, out_strides, 4);
size_t copy_size = copy_num * sizeof(int8_t);
size_t out_offset = 0;
for (int n = 0; n < out_dim0; ++n) {
int in_n = n % in_shape[0];
int32_t stride_w = (n / in_shape[0]) % block_w;
int32_t stride_h = (n / in_shape[0]) / block_w;
size_t in_offset0 = in_n * in_strides[0];
for (int h = 0; h < out_dim1; ++h) {
size_t in_offset1 = in_offset0 + (h * block_h + stride_h) * in_strides[1];
for (int w = 0; w < out_dim2; ++w) {
size_t in_offset2 = in_offset1 + (w * block_w + stride_w) * in_strides[2];
memcpy(output + out_offset, input + in_offset2, copy_size);
out_offset += copy_num;
}
}
}
}
void DoSpaceToBatchPaddingNHWCInt8(const int8_t *input, int8_t *output, int *in_shape, int *padding, int *out_shape) {
int in_h = in_shape[1];
int in_w = in_shape[2];
int in_c = in_shape[3];
int out_w = out_shape[2];
int out_c = out_shape[3];
size_t ped_h_num = out_w * out_c;
size_t ped_h_size = ped_h_num * sizeof(int8_t);
size_t ped_w_size = out_c * sizeof(int8_t);
size_t out_offset = 0;
int in_strides[4];
ComputeStrides(in_shape, in_strides, 4);
int out_strides[4];
ComputeStrides(out_shape, out_strides, 4);
size_t copy_size = in_c * sizeof(int8_t);
for (int i = 0; i < in_shape[0]; ++i) {
size_t in_offset0 = i * in_strides[0];
for (int pad_h_top = 0; pad_h_top < padding[0]; ++pad_h_top) {
memset(output + out_offset, 0, ped_h_size);
out_offset += ped_h_num;
}
for (int j = 0; j < in_h; ++j) {
size_t in_offset1 = in_offset0 + j * in_strides[1];
for (int pad_w_left = 0; pad_w_left < padding[2]; ++pad_w_left) {
memset(output + out_offset, 0, ped_w_size);
out_offset += out_c;
}
for (int k = 0; k < in_w; ++k) {
size_t in_offset2 = in_offset1 + k * in_strides[2];
memcpy(output + out_offset, input + in_offset2, copy_size);
out_offset += in_c;
}
for (int pad_w_right = 0; pad_w_right < padding[3]; ++pad_w_right) {
memset(output + out_offset, 0, ped_w_size);
out_offset += out_c;
}
}
for (int pad_h_bottom = 0; pad_h_bottom < padding[1]; ++pad_h_bottom) {
memset(output + out_offset, 0, ped_h_size);
out_offset += ped_h_num;
}
}
}

@ -0,0 +1,30 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_
#define MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_
#include "nnacl/op_base.h"
#ifdef __cplusplus
extern "C" {
#endif
void DoSpaceToBatchNHWCInt8(const int8_t *input, int8_t *output, int *block_sizes, int *in_shape, int *out_shape);
void DoSpaceToBatchPaddingNHWCInt8(const int8_t *input, int8_t *output, int *in_shape, int *padding, int *out_shape);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_INT8_SPACE_TO_BATCH_INT8_H_

@ -15,100 +15,52 @@
*/
#include "src/runtime/kernel/arm/fp32/space_to_batch.h"
#include <vector>
#include "schema/ops_generated.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "nnacl/fp32/space_to_batch.h"
#include "nnacl/errorcode.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_FORMAT_ERR;
using mindspore::lite::RET_OK;
using mindspore::lite::RET_OP_EXECUTE_FAILURE;
using mindspore::schema::PrimitiveType_SpaceToBatch;
using mindspore::schema::PrimitiveType_SpaceToBatchND;
namespace mindspore::kernel {
namespace {
size_t EnumElement(int *shape, int n_dims) {
size_t total = 1;
for (int i = 0; i < n_dims; i++) {
total *= shape[i];
}
return total;
}
} // namespace
int SpaceToBatchCPUKernel::Init() {
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_);
for (int i = 0; i < SPACE_TO_BATCH_PADDINGS_SIZE; ++i) {
if (param->paddings_[i] != 0) {
param->need_paddings_ = true;
break;
}
}
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
void SpaceToBatchCPUKernel::FreeTmpBuffer() {
if (pedding_h_data_ != nullptr) {
context_->allocator->Free(pedding_h_data_);
pedding_h_data_ = nullptr;
}
if (pedding_w_data_ != nullptr) {
context_->allocator->Free(pedding_w_data_);
pedding_w_data_ = nullptr;
}
if (pedding_input_ != nullptr) {
context_->allocator->Free(pedding_input_);
pedding_input_ = nullptr;
}
}
int SpaceToBatchCPUKernel::ReSize() {
if (in_tensors_[0]->GetFormat() != schema::Format::Format_NHWC) {
auto input_tensor = in_tensors_.at(0);
auto output_tensor = out_tensors_.at(0);
if (input_tensor->GetFormat() != schema::Format_NHWC) {
MS_LOG(ERROR) << "space_to_batch only support NHWC now!";
return RET_FORMAT_ERR;
}
FreeTmpBuffer();
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_);
if (!param->need_paddings_) {
return RET_OK;
}
auto input = in_tensors_[0];
auto in_shape = input->shape();
padded_in_shape_ = in_shape;
padded_in_shape_[1] = in_shape[1] + param->paddings_[0] + param->paddings_[1];
padded_in_shape_[2] = in_shape[2] + param->paddings_[2] + param->paddings_[3];
auto num_elements_padded = EnumElement(padded_in_shape_.data(), in_shape.size());
auto output_shape = out_tensors_[0]->shape();
auto pedding_h_size = padded_in_shape_[2] * output_shape[3] * sizeof(float);
pedding_h_data_ = reinterpret_cast<float *>(context_->allocator->Malloc(pedding_h_size));
if (pedding_h_data_ == nullptr) {
MS_LOG(ERROR) << "malloc pedding h data fail!";
return RET_ERROR;
for (size_t i = 0; i < DIMENSION_4D; i++) {
param->input_shape_[i] = input_tensor->shape().at(i);
param->output_shape_[i] = output_tensor->shape().at(i);
}
auto pedding_w_size = output_shape[3] * sizeof(float);
pedding_w_data_ = reinterpret_cast<float *>(context_->allocator->Malloc(pedding_w_size));
if (pedding_w_data_ == nullptr) {
MS_LOG(ERROR) << "malloc pedding w data fail!";
FreeTmpBuffer();
return RET_ERROR;
for (int i = 0; i < DIMENSION_4D; ++i) {
if (param->paddings_[i] != 0) {
param->need_paddings_ = true;
break;
}
}
pedding_input_ = reinterpret_cast<float *>(context_->allocator->Malloc(num_elements_padded * sizeof(float)));
if (pedding_input_ == nullptr) {
MS_LOG(ERROR) << "malloc pedding buffer fail!";
return RET_ERROR;
if (param->need_paddings_) {
param->padded_in_shape_[kNHWC_N] = input_tensor->shape().at(kNHWC_N);
param->padded_in_shape_[kNHWC_H] = input_tensor->shape().at(kNHWC_H) + param->paddings_[0] + param->paddings_[1];
param->padded_in_shape_[kNHWC_W] = input_tensor->shape().at(kNHWC_W) + param->paddings_[2] + param->paddings_[3];
param->padded_in_shape_[kNHWC_C] = input_tensor->shape().at(kNHWC_C);
param->padded_input_element_num = param->padded_in_shape_[kNHWC_N] * param->padded_in_shape_[kNHWC_H] *
param->padded_in_shape_[kNHWC_W] * param->padded_in_shape_[kNHWC_C];
}
memset(pedding_h_data_, 0, pedding_h_size);
memset(pedding_w_data_, 0, pedding_w_size);
return RET_OK;
}
@ -118,23 +70,34 @@ int SpaceToBatchCPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input = in_tensors_[0];
auto output = out_tensors_[0];
const float *input_ptr_ = reinterpret_cast<const float *>(input->MutableData());
float *output_ptr_ = reinterpret_cast<float *>(output->MutableData());
auto input_tensor = in_tensors_.at(0);
auto output_tensor = out_tensors_.at(0);
auto input_ptr = reinterpret_cast<const float *>(input_tensor->MutableData());
auto output_ptr = reinterpret_cast<float *>(output_tensor->MutableData());
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_);
auto in_shape = input->shape();
auto out_shape = output->shape();
if (param->need_paddings_) {
DoSpaceToBatchPaddingNHWC(input_ptr_, pedding_input_, in_shape.data(), param->paddings_, padded_in_shape_.data(),
pedding_h_data_, pedding_w_data_);
DoSpaceToBatchNHWC(pedding_input_, output_ptr_, param, padded_in_shape_.data(), out_shape.data());
return RET_OK;
padded_input_ = context_->allocator->Malloc(param->padded_input_element_num * sizeof(float));
if (padded_input_ == nullptr) {
MS_LOG(ERROR) << "Memory allocation failed";
return RET_ERROR;
}
auto padded_input = reinterpret_cast<float *>(padded_input_);
DoSpaceToBatchPaddingNHWC(input_ptr, padded_input, param->input_shape_, param->paddings_, param->padded_in_shape_);
DoSpaceToBatchNHWC(padded_input, output_ptr, param->block_sizes_, param->padded_in_shape_, param->output_shape_);
FreeTmpBuffer();
} else {
DoSpaceToBatchNHWC(input_ptr_, output_ptr_, param, in_shape.data(), out_shape.data());
return RET_OK;
DoSpaceToBatchNHWC(input_ptr, output_ptr, param->block_sizes_, param->input_shape_, param->output_shape_);
}
} // namespace mindspore::kernel
return RET_OK;
}
void SpaceToBatchCPUKernel::FreeTmpBuffer() {
if (padded_input_ != nullptr) {
context_->allocator->Free(padded_input_);
padded_input_ = nullptr;
}
}
kernel::LiteKernel *CpuSpaceToBatchFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *param,
@ -149,12 +112,11 @@ kernel::LiteKernel *CpuSpaceToBatchFp32KernelCreator(const std::vector<lite::Ten
MS_LOG(ERROR) << "new SpaceToBatchCPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << param->name_
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(param->type_));
delete kernel;
return nullptr;
}
return kernel;

@ -27,18 +27,16 @@ class SpaceToBatchCPUKernel : public LiteKernel {
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~SpaceToBatchCPUKernel() { FreeTmpBuffer(); }
~SpaceToBatchCPUKernel() {}
int Init() override;
int ReSize() override;
int Run() override;
private:
protected:
size_t EnumElement(int *shape, int n_dims);
void FreeTmpBuffer();
float *pedding_input_ = nullptr;
float *pedding_h_data_ = nullptr;
float *pedding_w_data_ = nullptr;
std::vector<int> padded_in_shape_;
void *padded_input_ = nullptr;
};
} // namespace mindspore::kernel

@ -0,0 +1,84 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/space_to_batch_int8.h"
#include "src/kernel_registry.h"
#include "nnacl/fp32/space_to_batch.h"
#include "nnacl/int8/space_to_batch_int8.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_SpaceToBatch;
using mindspore::schema::PrimitiveType_SpaceToBatchND;
namespace mindspore::kernel {
int SpaceToBatchInt8CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
auto input_tensor = in_tensors_.at(0);
auto output_tensor = out_tensors_.at(0);
auto input_ptr = reinterpret_cast<const int8_t *>(input_tensor->MutableData());
auto output_ptr = reinterpret_cast<int8_t *>(output_tensor->MutableData());
SpaceToBatchParameter *param = reinterpret_cast<SpaceToBatchParameter *>(this->op_parameter_);
if (param->need_paddings_) {
padded_input_ = context_->allocator->Malloc(param->padded_input_element_num * sizeof(int8_t));
if (padded_input_ == nullptr) {
MS_LOG(ERROR) << "Memory allocation failed";
return RET_ERROR;
}
auto padded_input = reinterpret_cast<int8_t *>(padded_input_);
DoSpaceToBatchPaddingNHWCInt8(input_ptr, padded_input, param->input_shape_, param->paddings_,
param->padded_in_shape_);
DoSpaceToBatchNHWCInt8(padded_input, output_ptr, param->block_sizes_, param->padded_in_shape_,
param->output_shape_);
FreeTmpBuffer();
} else {
DoSpaceToBatchNHWCInt8(input_ptr, output_ptr, param->block_sizes_, param->input_shape_, param->output_shape_);
}
return RET_OK;
}
kernel::LiteKernel *CpuSpaceToBatchInt8KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs,
OpParameter *param, const lite::Context *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (param == nullptr) {
MS_LOG(ERROR) << "Input param is nullptr!";
return nullptr;
}
auto *kernel = new (std::nothrow) SpaceToBatchInt8CPUKernel(param, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new SpaceToBatchInt8CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << param->name_
<< ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(param->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_SpaceToBatch, CpuSpaceToBatchInt8KernelCreator)
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_SpaceToBatchND, CpuSpaceToBatchInt8KernelCreator)
} // namespace mindspore::kernel

@ -0,0 +1,36 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_
#include <vector>
#include "src/runtime/kernel/arm/fp32/space_to_batch.h"
namespace mindspore::kernel {
class SpaceToBatchInt8CPUKernel : public SpaceToBatchCPUKernel {
public:
SpaceToBatchInt8CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::Context *ctx,
const mindspore::lite::PrimitiveC *primitive)
: SpaceToBatchCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~SpaceToBatchInt8CPUKernel() {}
int Run() override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_SPACE_TO_BATCH_INT8_H_

@ -38,7 +38,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest4) {
SpaceToBatchParameter param;
param.block_sizes_[0] = 2;
param.block_sizes_[1] = 1;
DoSpaceToBatchNHWC(input.data(), out, &param, in_shape.data(), out_shape.data());
DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -56,7 +56,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest5) {
SpaceToBatchParameter param;
param.block_sizes_[0] = 1;
param.block_sizes_[1] = 2;
DoSpaceToBatchNHWC(input.data(), out, &param, in_shape.data(), out_shape.data());
DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -74,7 +74,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest6) {
SpaceToBatchParameter param;
param.block_sizes_[0] = 2;
param.block_sizes_[1] = 2;
DoSpaceToBatchNHWC(input.data(), out, &param, in_shape.data(), out_shape.data());
DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -96,7 +96,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest7) {
SpaceToBatchParameter param;
param.block_sizes_[0] = 2;
param.block_sizes_[1] = 2;
DoSpaceToBatchNHWC(input.data(), out, &param, in_shape.data(), out_shape.data());
DoSpaceToBatchNHWC(input.data(), out, param.block_sizes_, in_shape.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -115,10 +115,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest8) {
std::vector<int> in_shape = {1, 4, 4, 2};
std::vector<int> out_shape = {1, 5, 5, 2};
std::vector<int> padding = {0, 1, 0, 1};
std::vector<float> pedding_h(10, 0);
std::vector<float> pedding_w(2, 0);
DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data(), pedding_h.data(),
pedding_w.data());
DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -138,10 +135,7 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest9) {
std::vector<int> in_shape = {1, 4, 4, 2};
std::vector<int> out_shape = {1, 6, 6, 2};
std::vector<int> padding = {1, 1, 1, 1};
std::vector<float> pedding_h(12, 0);
std::vector<float> pedding_w(2, 0);
DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data(), pedding_h.data(),
pedding_w.data());
DoSpaceToBatchPaddingNHWC(input.data(), out, in_shape.data(), padding.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}
@ -163,14 +157,11 @@ TEST_F(SpaceToBatchTestFp32, SpaceToBatchTest10) {
std::vector<int> pedding_out_shape = {1, 6, 6, 2};
std::vector<int> out_shape = {4, 3, 3, 2};
std::vector<int> padding = {1, 1, 1, 1};
std::vector<float> pedding_h(12, 0);
std::vector<float> pedding_w(2, 0);
DoSpaceToBatchPaddingNHWC(input.data(), pedding_out, in_shape.data(), padding.data(), pedding_out_shape.data(),
pedding_h.data(), pedding_w.data());
DoSpaceToBatchPaddingNHWC(input.data(), pedding_out, in_shape.data(), padding.data(), pedding_out_shape.data());
SpaceToBatchParameter param;
param.block_sizes_[0] = 2;
param.block_sizes_[1] = 2;
DoSpaceToBatchNHWC(pedding_out, out, &param, pedding_out_shape.data(), out_shape.data());
DoSpaceToBatchNHWC(pedding_out, out, param.block_sizes_, pedding_out_shape.data(), out_shape.data());
for (int i = 0; i < kOutSize; ++i) {
std::cout << out[i] << " ";
}

@ -0,0 +1,57 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include "common/common_test.h"
#include "nnacl/fp32/space_to_batch.h"
#include "mindspore/lite/src/kernel_registry.h"
namespace mindspore {
class SpaceToBatchTestInt8 : public mindspore::CommonTest {
public:
SpaceToBatchTestInt8() {}
};
TEST_F(SpaceToBatchTestInt8, test1) {
lite::Tensor in_tensor(kNumberTypeInt8, {1, 2, 2, 1});
lite::Tensor out_tensor(kNumberTypeInt8, {4, 2, 2, 1});
int8_t input_data[] = {1, 2, 3, 4};
int8_t output_data[16] = {0};
in_tensor.SetData(input_data);
out_tensor.SetData(output_data);
std::vector<lite::Tensor *> inputs = {&in_tensor};
std::vector<lite::Tensor *> outputs = {&out_tensor};
SpaceToBatchParameter parameter = {{}, false, {2, 2}, {1, 1, 1, 1}};
kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SpaceToBatchND};
auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc);
ASSERT_NE(creator, nullptr);
auto ctx = std::make_shared<lite::Context>();
auto kernel = creator(inputs, outputs, reinterpret_cast<OpParameter *>(&parameter), ctx.get(), desc, nullptr);
ASSERT_NE(kernel, nullptr);
auto ret = kernel->Run();
EXPECT_EQ(0, ret);
int8_t expect[] = {0, 0, 0, 4, 0, 0, 3, 0, 0, 2, 0, 0, 1, 0, 0, 0};
for (int i = 0; i < 8; ++i) {
EXPECT_EQ(output_data[i], expect[i]);
}
in_tensor.SetData(nullptr);
out_tensor.SetData(nullptr);
}
} // namespace mindspore
Loading…
Cancel
Save