add l2normalize gpu kernel.

pull/7670/head
linqingke 4 years ago
parent e805051c1f
commit 99480d26c6

@ -0,0 +1,39 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "l2normalize_impl.cuh"
#include "runtime/device/gpu/cuda_common.h"
#include "include/cuda_fp16.h"
template <typename T>
__global__ void AssignEps(const size_t size, const float eps, T* value) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
float v = static_cast<float>(value[pos]);
float max = v > eps ? v : eps;
value[pos] = static_cast<T>(max);
}
return;
}
template <typename T>
void GetMaxWithEpsAndValue(const size_t size, const float eps, T* value, cudaStream_t cuda_stream) {
AssignEps<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, eps, value);
return;
}
template void GetMaxWithEpsAndValue<float>(const size_t size, const float eps, float* value, cudaStream_t cuda_stream);
template void GetMaxWithEpsAndValue<half>(const size_t size, const float eps, half* value, cudaStream_t cuda_stream);
template void GetMaxWithEpsAndValue<int>(const size_t size, const float eps, int* value, cudaStream_t cuda_stream);

@ -0,0 +1,22 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_L2NORMALIZE_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_L2NORMALIZE_H_
template <typename T>
void GetMaxWithEpsAndValue(const size_t size, const float eps, T* value, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_L2NORMALIZE_H_

@ -0,0 +1,28 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/l2normalize_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(L2Normalize, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
L2NormalizeGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(L2Normalize, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
L2NormalizeGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(L2Normalize, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
L2NormalizeGpuKernel, int)
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,47 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
class Net(Cell):
def __init__(self, axis=0, epsilon=1e-4):
super(Net, self).__init__()
self.norm = P.L2Normalize(axis=axis, epsilon=epsilon)
def construct(self, x):
return self.norm(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_l2normalize():
x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
expect = x / np.sqrt(np.sum(x**2, axis=0, keepdims=True))
x = Tensor(x)
error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
norm_op = Net(axis=0)
output = norm_op(x)
diff = output.asnumpy() - expect
assert np.all(diff < error)
assert np.all(-diff < error)
Loading…
Cancel
Save