From: @zhao_ting_v
Reviewed-by: @wuxuejian,@liangchenghui
Signed-off-by: @wuxuejian
pull/10712/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit 998a8e0d53

@ -0,0 +1,87 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include "backend/kernel_compiler/cpu/topk_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
template <typename T>
void TopKCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
if (inputs.size() != 2 || outputs.size() != 2) {
MS_LOG(EXCEPTION) << "TopK needs 2 inputs and 2 outputs, but get inputs: " << inputs.size()
<< "outputs: " << outputs.size();
}
if (inputs[0]->size != outer_size_ * inner_size_ * sizeof(T)) {
MS_LOG(EXCEPTION) << "Error input data size!";
}
if (inputs[1]->size != sizeof(int)) {
MS_LOG(EXCEPTION) << "Input K must be int!";
}
auto input = reinterpret_cast<T *>(inputs[0]->addr);
int k = reinterpret_cast<int *>(inputs[1]->addr)[0];
auto output = reinterpret_cast<T *>(outputs[0]->addr);
auto indices = reinterpret_cast<int *>(outputs[1]->addr);
if (k < 1) {
MS_LOG(EXCEPTION) << "Input k must > 0!";
}
int k_num = std::min<int>(inner_size_, k);
if (outputs[0]->size != outer_size_ * k_num * sizeof(T)) {
MS_LOG(EXCEPTION) << "Error output data size!";
}
for (size_t i = 0; i < outer_size_; ++i) {
std::vector<size_t> idx(inner_size_);
auto base_input = i * inner_size_;
std::iota(idx.begin(), idx.end(), base_input);
std::sort(idx.begin(), idx.end(),
[&input](size_t index_1, size_t index_2) { return input[index_1] > input[index_2]; });
auto base_output = i * k_num;
if (!sorted_) {
std::sort(idx.begin(), idx.begin() + k_num);
}
for (int j = 0; j < k_num; ++j) {
indices[base_output + j] = idx[j] - base_input;
output[base_output + j] = input[idx[j]];
}
}
}
void TopKCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
auto x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < x_shape_.size() - 1; ++i) {
outer_size_ *= x_shape_[i];
}
inner_size_ = x_shape_[x_shape_.size() - 1];
sorted_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "sorted");
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
bool TopKCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat16) {
LaunchKernel<float16>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<float>(inputs, outputs);
}
return true;
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,59 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TOPK_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TOPK_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include <string>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TopKCPUKernel : public CPUKernel {
public:
TopKCPUKernel() = default;
~TopKCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
size_t outer_size_{1};
size_t inner_size_{1};
bool sorted_{false};
TypeId dtype_{kTypeUnknown};
};
MS_REG_CPU_KERNEL(TopK,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeInt32),
TopKCPUKernel)
MS_REG_CPU_KERNEL(TopK,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeInt32),
TopKCPUKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TOPK_CPU_KERNEL_H_

@ -1885,7 +1885,7 @@ class TopK(PrimitiveWithInfer):
- **indices** (Tensor) - The indices of values within the last dimension of input.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> topk = ops.TopK(sorted=True)

@ -0,0 +1,82 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.ops import operations as P
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_topk():
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
x_np = np.random.rand(3, 4).astype(np.float32)
k = 4
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
x_np = np.random.rand(3, 4).astype(np.float32)
k = 4
ms_output = P.TopK(False)(Tensor(x_np), k)
assert np.allclose(ms_output[0].asnumpy(), x_np)
x_np = np.random.rand(2, 3, 4).astype(np.float32)
k = 2
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
x_np = np.random.rand(512, 1024).astype(np.float32)
k = 512
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
# sorted elements num greater than max thread per block
x_np = np.random.rand(512, 2048).astype(np.float32)
k = 1
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
x_np = np.random.rand(512, 2048).astype(np.float32)
k = 2048
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
# sorted elements num greater than max share memory per block
x_np = np.random.rand(512, 40960).astype(np.float32)
k = 1
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
x_np = np.random.rand(512, 40960).astype(np.float32)
k = 40960
ms_output = P.TopK(True)(Tensor(x_np), k)
np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k]
assert np.allclose(ms_output[0].asnumpy(), np_output)
x_np = np.random.rand(512, 40960).astype(np.float32)
k = 40960
ms_output = P.TopK(False)(Tensor(x_np), k)
assert np.allclose(ms_output[0].asnumpy(), x_np)
Loading…
Cancel
Save