hausdorff_distance

pull/9502/head
Jiaqi 4 years ago
parent bfc6cca4f8
commit 9a5b9525de

@ -19,6 +19,7 @@ Functions to measure the performance of the machine learning models
on the evaluation dataset. It's used to choose the best model.
"""
from .accuracy import Accuracy
from .hausdorff_distance import HausdorffDistance
from .error import MAE, MSE
from .metric import Metric
from .precision import Precision
@ -33,6 +34,7 @@ __all__ = [
"MAE", "MSE",
"Metric",
"Precision",
"HausdorffDistance",
"Recall",
"Fbeta",
"F1",
@ -49,6 +51,7 @@ __factory__ = {
'recall': Recall,
'F1': F1,
'topk': TopKCategoricalAccuracy,
'hausdorff_distance': HausdorffDistance,
'top_1_accuracy': Top1CategoricalAccuracy,
'top_5_accuracy': Top5CategoricalAccuracy,
'mae': MAE,

File diff suppressed because it is too large Load Diff

@ -0,0 +1,65 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# """test_hausdorff_distance"""
import math
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import get_metric_fn, HausdorffDistance
def test_hausdorff_distance():
"""test_hausdorff_distance"""
x = Tensor(np.array([[3, 0, 1], [1, 3, 0], [1, 0, 2]]))
y = Tensor(np.array([[0, 2, 1], [1, 2, 1], [0, 0, 1]]))
metric = get_metric_fn('hausdorff_distance')
metric.clear()
metric.update(x, y, 0)
distance = metric.eval()
assert math.isclose(distance, 1.4142135623730951, abs_tol=0.001)
def test_hausdorff_distance_update1():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
metric = HausdorffDistance()
metric.clear()
with pytest.raises(ValueError):
metric.update(x)
def test_hausdorff_distance_update2():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
y = Tensor(np.array([1, 0]))
metric = HausdorffDistance()
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_hausdorff_distance_init():
with pytest.raises(ValueError):
HausdorffDistance(distance_metric="eucli", percentile=None, directed=False, crop=False)
def test_hausdorff_distance_runtime():
metric = HausdorffDistance()
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()
Loading…
Cancel
Save