|
|
|
@ -22,7 +22,7 @@ from mindspore import Tensor
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
class RangeNet(nn.Cell):
|
|
|
|
|
def __init__(self, maxlen=10000):
|
|
|
|
|
def __init__(self, maxlen=50):
|
|
|
|
|
super(RangeNet, self).__init__()
|
|
|
|
|
self.range = P.Range(maxlen)
|
|
|
|
|
|
|
|
|
@ -30,6 +30,40 @@ class RangeNet(nn.Cell):
|
|
|
|
|
return self.range(start, limit, delta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_range_precision_end_equals_last_element():
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
|
|
|
|
range_net = RangeNet(100)
|
|
|
|
|
ms_out = range_net(Tensor(1000.04, mstype.float32),
|
|
|
|
|
Tensor(1001.04, mstype.float32),
|
|
|
|
|
Tensor(0.01, mstype.float32)).asnumpy()
|
|
|
|
|
np_expected = np.arange(1000.04, 1001.04, 0.01, dtype=np.float32)
|
|
|
|
|
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
|
|
|
|
|
|
|
|
|
range_net = RangeNet(1000)
|
|
|
|
|
ms_out = range_net(Tensor(100, mstype.float32),
|
|
|
|
|
Tensor(101, mstype.float32),
|
|
|
|
|
Tensor(0.001, mstype.float32)).asnumpy()
|
|
|
|
|
np_expected = np.arange(100, 101, 0.001, dtype=np.float32)
|
|
|
|
|
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
|
|
|
|
|
|
|
|
|
range_net = RangeNet(799900)
|
|
|
|
|
ms_out = range_net(Tensor(1, mstype.float32),
|
|
|
|
|
Tensor(8000, mstype.float32),
|
|
|
|
|
Tensor(0.01, mstype.float32)).asnumpy()
|
|
|
|
|
np_expected = np.arange(1, 8000, 0.01, dtype=np.float32)
|
|
|
|
|
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
|
|
|
|
|
|
|
|
|
range_net = RangeNet(53)
|
|
|
|
|
ms_out = range_net(Tensor(-12000, mstype.float32),
|
|
|
|
|
Tensor(-12053, mstype.float32),
|
|
|
|
|
Tensor(-1, mstype.float32)).asnumpy()
|
|
|
|
|
np_expected = np.arange(-12000, -12053, -1, dtype=np.float32)
|
|
|
|
|
np.testing.assert_allclose(ms_out, np_expected, rtol=1e-5)
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@ -97,7 +131,7 @@ def test_range_invalid_max_output_length():
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_range_invalid_input():
|
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
|
|
|
range_net = RangeNet(3500)
|
|
|
|
|
range_net = RangeNet()
|
|
|
|
|
_ = range_net(Tensor(0, mstype.int32), Tensor(5, mstype.int32), Tensor(0, mstype.int32)).asnumpy()
|
|
|
|
|
assert "delta cannot be equal to zero" in str(info.value)
|
|
|
|
|
|
|
|
|
@ -107,11 +141,11 @@ def test_range_invalid_input():
|
|
|
|
|
assert "number of elements in the output exceeds maxlen" in str(info.value)
|
|
|
|
|
|
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
|
|
|
range_net = RangeNet(3500)
|
|
|
|
|
range_net = RangeNet()
|
|
|
|
|
_ = range_net(Tensor(20, mstype.int32), Tensor(5, mstype.int32), Tensor(1, mstype.int32)).asnumpy()
|
|
|
|
|
assert "delta cannot be positive when limit < start" in str(info.value)
|
|
|
|
|
|
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
|
|
|
range_net = RangeNet(3500)
|
|
|
|
|
range_net = RangeNet()
|
|
|
|
|
_ = range_net(Tensor(2, mstype.int32), Tensor(5, mstype.int32), Tensor(-4, mstype.int32)).asnumpy()
|
|
|
|
|
assert "delta cannot be negative when limit > start" in str(info.value)
|
|
|
|
|