parent
5d0490909d
commit
9b277db659
@ -0,0 +1,25 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""create mindrecord for training retinanet."""
|
||||
|
||||
import argparse
|
||||
from src.dataset import create_mindrecord
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="retinanet dataset create")
|
||||
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
|
||||
args_opt = parser.parse_args()
|
||||
mindrecord_file = create_mindrecord(args_opt.dataset, "retinanet.mindrecord", True)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""export for retinanet"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
from src.retinanet import retinanet50, resnet50, retinanetInferWithDecoder
|
||||
from src.config import config
|
||||
from src.box_utils import default_boxes
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='retinanet evaluation')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
|
||||
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
|
||||
help="run platform, only support Ascend.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--file_name", type=str, default="retinanet", help="output file name.")
|
||||
args_opt = parser.parse_args()
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
|
||||
|
||||
backbone = resnet50(config.num_classes)
|
||||
net = retinanet50(backbone, config)
|
||||
net = retinanetInferWithDecoder(net, Tensor(default_boxes), config)
|
||||
param_dict = load_checkpoint(config.checkpoint_path)
|
||||
net.init_parameters_data()
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
shape = [args_opt.batch_size, 3] + config.img_shape
|
||||
input_data = Tensor(np.zeros(shape), mstype.float32)
|
||||
export(net, input_data, file_name=args_opt.file_name, file_format=args_opt.file_format)
|
Loading…
Reference in new issue