parent
d4ef0452a6
commit
9c21f78f16
@ -0,0 +1,80 @@
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class OpNetWrapper(nn.Cell):
|
||||
def __init__(self, op):
|
||||
super(OpNetWrapper, self).__init__()
|
||||
self.op = op
|
||||
|
||||
def construct(self, *inputs):
|
||||
return self.op(*inputs)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicaland():
|
||||
op = P.LogicalAnd()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([True, False, False]))
|
||||
input_y = Tensor(np.array([True, True, False]))
|
||||
outputs = op_wrapper(input_x, input_y)
|
||||
|
||||
assert np.allclose(outputs.asnumpy(), (True, False, False))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicalor():
|
||||
op = P.LogicalOr()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([True, False, False]))
|
||||
input_y = Tensor(np.array([True, True, False]))
|
||||
outputs = op_wrapper(input_x, input_y)
|
||||
|
||||
assert np.allclose(outputs.asnumpy(), (True, True, False))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicalnot():
|
||||
op = P.LogicalNot()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([True, False, False]))
|
||||
outputs = op_wrapper(input_x)
|
||||
|
||||
assert np.allclose(outputs.asnumpy(), (False, True, True))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_logicaland()
|
||||
test_logicalor()
|
||||
test_logicalnot()
|
Loading…
Reference in new issue