|
|
|
@ -70,13 +70,15 @@ x3 = np.array([[1, 2], [3, 4], [5.0, 88.0]]).astype(np.float32)
|
|
|
|
|
def test_status():
|
|
|
|
|
ms_status = Net()
|
|
|
|
|
output1 = ms_status(Tensor(x1))
|
|
|
|
|
output2 = ms_status(Tensor(x2))
|
|
|
|
|
output3 = ms_status(Tensor(x3))
|
|
|
|
|
expect1 = 1
|
|
|
|
|
expect2 = 1
|
|
|
|
|
expect3 = 0
|
|
|
|
|
assert output1.asnumpy()[0] == expect1
|
|
|
|
|
|
|
|
|
|
output2 = ms_status(Tensor(x2))
|
|
|
|
|
expect2 = 1
|
|
|
|
|
assert output2.asnumpy()[0] == expect2
|
|
|
|
|
|
|
|
|
|
output3 = ms_status(Tensor(x3))
|
|
|
|
|
expect3 = 0
|
|
|
|
|
assert output3.asnumpy()[0] == expect3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -86,13 +88,15 @@ def test_status():
|
|
|
|
|
def test_nan():
|
|
|
|
|
ms_isnan = Netnan()
|
|
|
|
|
output1 = ms_isnan(Tensor(x1))
|
|
|
|
|
output2 = ms_isnan(Tensor(x2))
|
|
|
|
|
output3 = ms_isnan(Tensor(x3))
|
|
|
|
|
expect1 = [[False, False, True, False]]
|
|
|
|
|
expect2 = [[False, False, False, False]]
|
|
|
|
|
expect3 = [[False, False], [False, False], [False, False]]
|
|
|
|
|
assert (output1.asnumpy() == expect1).all()
|
|
|
|
|
|
|
|
|
|
output2 = ms_isnan(Tensor(x2))
|
|
|
|
|
expect2 = [[False, False, False, False]]
|
|
|
|
|
assert (output2.asnumpy() == expect2).all()
|
|
|
|
|
|
|
|
|
|
output3 = ms_isnan(Tensor(x3))
|
|
|
|
|
expect3 = [[False, False], [False, False], [False, False]]
|
|
|
|
|
assert (output3.asnumpy() == expect3).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -102,13 +106,15 @@ def test_nan():
|
|
|
|
|
def test_inf():
|
|
|
|
|
ms_isinf = Netinf()
|
|
|
|
|
output1 = ms_isinf(Tensor(x1))
|
|
|
|
|
output2 = ms_isinf(Tensor(x2))
|
|
|
|
|
output3 = ms_isinf(Tensor(x3))
|
|
|
|
|
expect1 = [[False, False, False, False]]
|
|
|
|
|
expect2 = [[True, False, False, False]]
|
|
|
|
|
expect3 = [[False, False], [False, False], [False, False]]
|
|
|
|
|
assert (output1.asnumpy() == expect1).all()
|
|
|
|
|
|
|
|
|
|
output2 = ms_isinf(Tensor(x2))
|
|
|
|
|
expect2 = [[True, False, False, False]]
|
|
|
|
|
assert (output2.asnumpy() == expect2).all()
|
|
|
|
|
|
|
|
|
|
output3 = ms_isinf(Tensor(x3))
|
|
|
|
|
expect3 = [[False, False], [False, False], [False, False]]
|
|
|
|
|
assert (output3.asnumpy() == expect3).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -118,11 +124,13 @@ def test_inf():
|
|
|
|
|
def test_finite():
|
|
|
|
|
ms_isfinite = Netfinite()
|
|
|
|
|
output1 = ms_isfinite(Tensor(x1))
|
|
|
|
|
output2 = ms_isfinite(Tensor(x2))
|
|
|
|
|
output3 = ms_isfinite(Tensor(x3))
|
|
|
|
|
expect1 = [[True, True, False, True]]
|
|
|
|
|
expect2 = [[False, True, True, True]]
|
|
|
|
|
expect3 = [[True, True], [True, True], [True, True]]
|
|
|
|
|
assert (output1.asnumpy() == expect1).all()
|
|
|
|
|
|
|
|
|
|
output2 = ms_isfinite(Tensor(x2))
|
|
|
|
|
expect2 = [[False, True, True, True]]
|
|
|
|
|
assert (output2.asnumpy() == expect2).all()
|
|
|
|
|
|
|
|
|
|
output3 = ms_isfinite(Tensor(x3))
|
|
|
|
|
expect3 = [[True, True], [True, True], [True, True]]
|
|
|
|
|
assert (output3.asnumpy() == expect3).all()
|
|
|
|
|