commit
9e27ca929a
@ -0,0 +1,227 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
from mindspore import Tensor
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
|
||||
class NetBatchDot(nn.Cell):
|
||||
def __init__(self, axes):
|
||||
super(NetBatchDot, self).__init__()
|
||||
self.axes = axes
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.batch_dot(x, y, self.axes)
|
||||
|
||||
|
||||
# Implementation with numpy in tensorflow
|
||||
def _reference_batch_dot(x, y, axes):
|
||||
if isinstance(axes, int):
|
||||
axes = [axes, axes]
|
||||
elif isinstance(axes, tuple):
|
||||
axes = list(axes)
|
||||
if axes is None:
|
||||
if y.ndim == 2:
|
||||
axes = [x.ndim - 1, y.ndim - 1]
|
||||
else:
|
||||
axes = [x.ndim - 1, y.ndim - 2]
|
||||
if axes[0] < 0:
|
||||
axes[0] += x.ndim
|
||||
if axes[1] < 0:
|
||||
axes[1] += y.ndim
|
||||
result = []
|
||||
axes = [axes[0] - 1, axes[1] - 1]
|
||||
for xi, yi in zip(x, y):
|
||||
result.append(np.tensordot(xi, yi, axes))
|
||||
result = np.array(result)
|
||||
if result.ndim == 1:
|
||||
result = np.expand_dims(result, -1)
|
||||
return result
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_batch_dot_fp32():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
np.random.seed(12876)
|
||||
|
||||
# case 1
|
||||
shape_x1 = (3, 12, 5, 2, 3)
|
||||
shape_x2 = (3, 1, 7, 3, 2)
|
||||
axes = (-1, -2)
|
||||
x1 = np.ones(shape=shape_x1).astype(np.float32)
|
||||
x2 = np.ones(shape=shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 2
|
||||
shape_x1 = (4, 3, 7, 5)
|
||||
shape_x2 = (4, 1, 7, 1)
|
||||
axes = 2
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 3
|
||||
shape_x1 = (18, 3, 5, 7)
|
||||
shape_x2 = (18, 1, 3, 7)
|
||||
axes = -1
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 4
|
||||
shape_x1 = (2, 11, 3, 9)
|
||||
shape_x2 = (2, 7, 9, 3)
|
||||
axes = None
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 5
|
||||
shape_x1 = (7, 5)
|
||||
shape_x2 = (7, 5)
|
||||
axes = None
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 6
|
||||
shape_x1 = (7, 3, 5)
|
||||
shape_x2 = (7, 5)
|
||||
axes = None
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 7
|
||||
shape_x1 = (7, 5)
|
||||
shape_x2 = (7, 5, 3)
|
||||
axes = None
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 8
|
||||
shape_x1 = (39, 6)
|
||||
shape_x2 = (39, 6)
|
||||
axes = -1
|
||||
x1 = np.random.random(shape_x1).astype(np.float32)
|
||||
x2 = np.random.random(shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 9
|
||||
shape_x1 = (21, 2, 3)
|
||||
shape_x2 = (21, 3, 2)
|
||||
axes = (-1, -2)
|
||||
x1 = np.ones(shape=shape_x1).astype(np.float32)
|
||||
x2 = np.ones(shape=shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 10
|
||||
shape_x1 = (4, 3, 2, 1, 7, 5)
|
||||
shape_x2 = (4, 5, 7, 1)
|
||||
axes = -2
|
||||
x1 = np.ones(shape=shape_x1).astype(np.float32)
|
||||
x2 = np.ones(shape=shape_x2).astype(np.float32)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float32)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float32)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
assert np.allclose(ms_result_np, tf_result)
|
||||
|
||||
# case 10
|
||||
shape_x1 = (4, 3, 2, 1, 7, 5)
|
||||
shape_x2 = (4, 5, 7, 1)
|
||||
axes = -2
|
||||
x1 = np.ones(shape=shape_x1).astype(np.float16)
|
||||
x2 = np.ones(shape=shape_x2).astype(np.float16)
|
||||
x1_tensor = Tensor(x1, dtype=mindspore.float16)
|
||||
x2_tensor = Tensor(x2, dtype=mindspore.float16)
|
||||
|
||||
network = NetBatchDot(axes)
|
||||
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
|
||||
tf_result = _reference_batch_dot(x1, x2, axes)
|
||||
assert np.allclose(ms_result_np, tf_result)
|
Loading…
Reference in new issue