commit
9ee144ea40
@ -0,0 +1,177 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
|
||||
import mindspore.nn as nn
|
||||
from mindspore.train import Model, ParallelMode
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
GRADIENT_CLIP_TYPE = 1
|
||||
GRADIENT_CLIP_VALUE = 1.0
|
||||
clip_grad = C.MultitypeFuncGraph("clip_grad")
|
||||
grad_scale = C.MultitypeFuncGraph("grad_scale")
|
||||
reciprocal = P.Reciprocal()
|
||||
|
||||
|
||||
@grad_scale.register("Tensor", "Tensor")
|
||||
def tensor_grad_scale(scale, grad):
|
||||
return grad * reciprocal(scale)
|
||||
|
||||
|
||||
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=65536, scale_factor=2, scale_window=1000)
|
||||
|
||||
|
||||
@clip_grad.register("Number", "Number", "Tensor")
|
||||
def _clip_grad(clip_type, clip_value, grad):
|
||||
dt = F.dtype(grad)
|
||||
if clip_type == 0:
|
||||
new_grad = C.clip_by_value(grad, F.cast(F.tuple_to_array((-clip_value,)), dt),
|
||||
F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
else:
|
||||
new_grad = nn.ClipByNorm()(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
|
||||
return new_grad
|
||||
|
||||
|
||||
class TrainOneStepWithLossScaleCell(nn.Cell):
|
||||
def __init__(self, network, optimizer, scale_update_cell=None):
|
||||
super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.weights = optimizer.parameters
|
||||
self.optimizer = optimizer
|
||||
self.grad = C.GradOperation('grad',
|
||||
get_by_list=True,
|
||||
sens_param=True)
|
||||
self.reducer_flag = False
|
||||
self.grad_reducer = F.identity
|
||||
self.cast = P.Cast()
|
||||
self.alloc_status = P.NPUAllocFloatStatus()
|
||||
self.get_status = P.NPUGetFloatStatus()
|
||||
self.clear_before_grad = P.NPUClearFloatStatus()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||
self.depend_parameter_use = P.ControlDepend(depend_mode=1)
|
||||
self.base = Tensor(1, mstype.float32)
|
||||
self.less_equal = P.LessEqual()
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.loss_scale = None
|
||||
self.loss_scaling_manager = scale_update_cell
|
||||
if scale_update_cell:
|
||||
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
|
||||
name="loss_scale")
|
||||
|
||||
@C.add_flags(has_effect=True)
|
||||
def construct(self, x, sens=None):
|
||||
"""Defines the computation performed."""
|
||||
weights = self.weights
|
||||
loss = self.network(x)
|
||||
if sens is None:
|
||||
scaling_sens = self.loss_scale
|
||||
else:
|
||||
scaling_sens = sens
|
||||
# alloc status and clear should be right before gradoperation
|
||||
init = self.alloc_status()
|
||||
self.clear_before_grad(init)
|
||||
grads = self.grad(self.network, weights)(x, self.cast(scaling_sens, mstype.float32))
|
||||
# apply grad reducer on grads
|
||||
grads = self.grad_reducer(grads)
|
||||
grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
|
||||
self.get_status(init)
|
||||
flag_sum = self.reduce_sum(init, (0,))
|
||||
cond = self.less_equal(self.base, flag_sum)
|
||||
overflow = cond
|
||||
if sens is None:
|
||||
overflow = self.loss_scaling_manager(self.loss_scale, cond)
|
||||
if overflow:
|
||||
succ = False
|
||||
else:
|
||||
succ = self.optimizer(grads)
|
||||
ret = (loss, cond, scaling_sens)
|
||||
return F.depend(ret, succ)
|
||||
|
||||
|
||||
class DatasetLenet(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(DatasetLenet, self).__init__()
|
||||
self.predict = predict
|
||||
self.label = label
|
||||
self.index = 0
|
||||
self.length = length
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.index >= self.length:
|
||||
raise StopIteration
|
||||
self.index += 1
|
||||
return self.predict, self.label
|
||||
|
||||
def reset(self):
|
||||
self.index = 0
|
||||
|
||||
|
||||
class LoopLayer(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LoopLayer, self).__init__()
|
||||
self.matmul = P.MatMul()
|
||||
self.relu = P.ReLU()
|
||||
self.matmul_weight = Parameter(Tensor(np.ones([64, 64]), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.matmul(x, self.matmul_weight)
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.exp = P.Exp()
|
||||
self.mean = P.ReduceMean()
|
||||
layers = []
|
||||
for _ in range(3):
|
||||
layer = LoopLayer()
|
||||
layers.append(layer)
|
||||
self.layers = nn.CellList(layers)
|
||||
|
||||
def construct(self, x):
|
||||
out = self.exp(x)
|
||||
for layer in self.layers:
|
||||
layer_out = layer(out)
|
||||
out = layer_out
|
||||
out = self.mean(out, -1)
|
||||
return out
|
||||
|
||||
def test_loss_scale():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8)
|
||||
predict = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64,]), dtype=ms.int32)
|
||||
dataset = DatasetLenet(predict, label)
|
||||
net = Net()
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
|
||||
net = TrainOneStepWithLossScaleCell(net, opt, update_cell)
|
||||
model = Model(network=net)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
Loading…
Reference in new issue