commit
a4d7ad7f7d
@ -0,0 +1,92 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Get score by given metric."""
|
||||
from .ppl_score import ngram_ppl
|
||||
from .rouge_score import rouge
|
||||
|
||||
|
||||
def get_ppl_score(result):
|
||||
"""
|
||||
Calculate Perplexity(PPL) score.
|
||||
|
||||
Args:
|
||||
List[Dict], prediction, each example has 4 keys, "source",
|
||||
"target", "log_prob" and "length".
|
||||
|
||||
Returns:
|
||||
Float, ppl score.
|
||||
"""
|
||||
log_probs = []
|
||||
total_length = 0
|
||||
|
||||
for sample in result:
|
||||
log_prob = sample['log_prob']
|
||||
length = sample['length']
|
||||
log_probs.extend(log_prob)
|
||||
total_length += length
|
||||
|
||||
print(f" | log_prob:{log_prob}")
|
||||
print(f" | length:{length}")
|
||||
|
||||
ppl = ngram_ppl(log_probs, total_length, log_softmax=True)
|
||||
print(f" | final PPL={ppl}.")
|
||||
return ppl
|
||||
|
||||
|
||||
def get_rouge_score(result, vocab):
|
||||
"""
|
||||
Calculate ROUGE score.
|
||||
|
||||
Args:
|
||||
List[Dict], prediction, each example has 4 keys, "source",
|
||||
"target", "prediction" and "prediction_prob".
|
||||
Dictionary, dict instance.
|
||||
|
||||
retur:
|
||||
Str, rouge score.
|
||||
"""
|
||||
|
||||
predictions = []
|
||||
targets = []
|
||||
for sample in result:
|
||||
predictions.append(' '.join([vocab[t] for t in sample['prediction']]))
|
||||
targets.append(' '.join([vocab[t] for t in sample['target']]))
|
||||
print(f" | source: {' '.join([vocab[t] for t in sample['source']])}")
|
||||
print(f" | target: {targets[-1]}")
|
||||
|
||||
return rouge(predictions, targets)
|
||||
|
||||
|
||||
def get_score(result, vocab=None, metric='rouge'):
|
||||
"""
|
||||
Get eval score.
|
||||
|
||||
Args:
|
||||
List[Dict], prediction.
|
||||
Dictionary, dict instance.
|
||||
Str, metric function, default is rouge.
|
||||
|
||||
Return:
|
||||
Str, Score.
|
||||
"""
|
||||
score = None
|
||||
if metric == 'rouge':
|
||||
score = get_rouge_score(result, vocab)
|
||||
elif metric == 'ppl':
|
||||
score = get_ppl_score(result)
|
||||
else:
|
||||
print(f" |metric not in (rouge, ppl)")
|
||||
|
||||
return score
|
Loading…
Reference in new issue