!524 Added support for UA augmentation ops with tests
Merge pull request !524 from alashkari/ua-opspull/524/MERGE
commit
aad5771a62
@ -0,0 +1,101 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
|
||||
def visualize(image_original, image_auto_contrast):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_auto_contrast)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_auto_contrast[i])
|
||||
plt.title("DE AutoContrast image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_auto_contrast(plot=False):
|
||||
"""
|
||||
Test AutoContrast
|
||||
"""
|
||||
logger.info("Test AutoContrast")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# AutoContrast Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_auto_contrast = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.AutoContrast(),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_auto_contrast = ds.map(input_columns="image",
|
||||
operations=transforms_auto_contrast())
|
||||
|
||||
ds_auto_contrast = ds_auto_contrast.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_auto_contrast):
|
||||
if idx == 0:
|
||||
images_auto_contrast = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_auto_contrast = np.append(images_auto_contrast,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_auto_contrast[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_auto_contrast)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_auto_contrast(plot=True)
|
||||
|
@ -0,0 +1,101 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
|
||||
def visualize(image_original, image_equalize):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_equalize)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_equalize[i])
|
||||
plt.title("DE Color Equalized image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_equalize(plot=False):
|
||||
"""
|
||||
Test Equalize
|
||||
"""
|
||||
logger.info("Test Equalize")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# Color Equalized Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_equalize = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.Equalize(),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_equalize = ds.map(input_columns="image",
|
||||
operations=transforms_equalize())
|
||||
|
||||
ds_equalize = ds_equalize.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_equalize):
|
||||
if idx == 0:
|
||||
images_equalize = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_equalize = np.append(images_equalize,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_equalize[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_equalize)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_equalize(plot=True)
|
||||
|
@ -0,0 +1,100 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
def visualize(image_original, image_invert):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_invert)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_invert[i])
|
||||
plt.title("DE Color Inverted image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_invert(plot=False):
|
||||
"""
|
||||
Test Invert
|
||||
"""
|
||||
logger.info("Test Invert")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# Color Inverted Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_invert = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.Invert(),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_invert = ds.map(input_columns="image",
|
||||
operations=transforms_invert())
|
||||
|
||||
ds_invert = ds_invert.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_invert):
|
||||
if idx == 0:
|
||||
images_invert = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_invert = np.append(images_invert,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_invert[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_invert)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_invert(plot=True)
|
||||
|
@ -0,0 +1,102 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
|
||||
def visualize(image_original, image_random_color):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_random_color)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_random_color[i])
|
||||
plt.title("DE Random Color image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_random_color(degrees=(0.1,1.9), plot=False):
|
||||
"""
|
||||
Test RandomColor
|
||||
"""
|
||||
logger.info("Test RandomColor")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# Random Color Adjusted Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_random_color = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.RandomColor(degrees=degrees),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_random_color = ds.map(input_columns="image",
|
||||
operations=transforms_random_color())
|
||||
|
||||
ds_random_color = ds_random_color.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_random_color):
|
||||
if idx == 0:
|
||||
images_random_color = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_random_color = np.append(images_random_color,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_random_color[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_random_color)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_color()
|
||||
test_random_color(plot=True)
|
||||
test_random_color(degrees=(0.5,1.5), plot=True)
|
@ -0,0 +1,102 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
|
||||
def visualize(image_original, image_random_sharpness):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_random_sharpness)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_random_sharpness[i])
|
||||
plt.title("DE Random Sharpness image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_random_sharpness(degrees=(0.1,1.9), plot=False):
|
||||
"""
|
||||
Test RandomSharpness
|
||||
"""
|
||||
logger.info("Test RandomSharpness")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# Random Sharpness Adjusted Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_random_sharpness = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.RandomSharpness(degrees=degrees),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_random_sharpness = ds.map(input_columns="image",
|
||||
operations=transforms_random_sharpness())
|
||||
|
||||
ds_random_sharpness = ds_random_sharpness.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_random_sharpness):
|
||||
if idx == 0:
|
||||
images_random_sharpness = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_random_sharpness = np.append(images_random_sharpness,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_random_sharpness[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_random_sharpness)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_sharpness()
|
||||
test_random_sharpness(plot=True)
|
||||
test_random_sharpness(degrees=(0.5,1.5), plot=True)
|
@ -0,0 +1,107 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mindspore import log as logger
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.vision.py_transforms as F
|
||||
|
||||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
def visualize(image_original, image_ua):
|
||||
"""
|
||||
visualizes the image using DE op and Numpy op
|
||||
"""
|
||||
num = len(image_ua)
|
||||
for i in range(num):
|
||||
plt.subplot(2, num, i + 1)
|
||||
plt.imshow(image_original[i])
|
||||
plt.title("Original image")
|
||||
|
||||
plt.subplot(2, num, i + num + 1)
|
||||
plt.imshow(image_ua[i])
|
||||
plt.title("DE UniformAugment image")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_uniform_augment(plot=False, num_ops=2):
|
||||
"""
|
||||
Test UniformAugment
|
||||
"""
|
||||
logger.info("Test UniformAugment")
|
||||
|
||||
# Original Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transforms_original = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_original = ds.map(input_columns="image",
|
||||
operations=transforms_original())
|
||||
|
||||
ds_original = ds_original.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_original = np.append(images_original,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
# UniformAugment Images
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
|
||||
transform_list = [F.RandomRotation(45),
|
||||
F.RandomColor(),
|
||||
F.RandomSharpness(),
|
||||
F.Invert(),
|
||||
F.AutoContrast(),
|
||||
F.Equalize()]
|
||||
|
||||
transforms_ua = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224,224)),
|
||||
F.UniformAugment(transforms=transform_list, num_ops=num_ops),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_ua = ds.map(input_columns="image",
|
||||
operations=transforms_ua())
|
||||
|
||||
ds_ua = ds_ua.batch(512)
|
||||
|
||||
for idx, (image,label) in enumerate(ds_ua):
|
||||
if idx == 0:
|
||||
images_ua = np.transpose(image, (0, 2,3,1))
|
||||
else:
|
||||
images_ua = np.append(images_ua,
|
||||
np.transpose(image, (0, 2,3,1)),
|
||||
axis=0)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = np.mean((images_ua[i]-images_original[i])**2)
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
if plot:
|
||||
visualize(images_original, images_ua)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_uniform_augment(num_ops=1)
|
||||
|
Loading…
Reference in new issue