parent
095d7fb877
commit
ab17c49eba
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAcoshGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAcoshGrad, self).__init__()
|
||||
self.acoshGrad = G.AcoshGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.acoshGrad(x, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosh_grad():
|
||||
x = np.array([5, 4, 3]).astype('float32')
|
||||
dy = np.array([1, 0, -1]).astype('float32')
|
||||
acosh_grad = NetAcoshGrad()
|
||||
output = acosh_grad(Tensor(x), Tensor(dy))
|
||||
print(output)
|
||||
expect = dy / np.sqrt(x * x - 1)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAcosh(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAcosh, self).__init__()
|
||||
self.acosh = P.Acosh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.acosh(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosh():
|
||||
np_array = np.array([1, 2, 3, 4, 5]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAcosh()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arccosh(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAsinhGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAsinhGrad, self).__init__()
|
||||
self.asinhGrad = G.AsinhGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.asinhGrad(x, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinh_grad():
|
||||
x = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
dy = np.array([1, 0, -1]).astype('float32')
|
||||
asinh_grad = NetAsinhGrad()
|
||||
output = asinh_grad(Tensor(x), Tensor(dy))
|
||||
print(output)
|
||||
expect = dy / np.sqrt(1 + x * x)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAsinh(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAsinh, self).__init__()
|
||||
self.asinh = P.Asinh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.asinh(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinh():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAsinh()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arcsinh(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAtan2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAtan2, self).__init__()
|
||||
self.atan2 = P.Atan2()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.atan2(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan2():
|
||||
np_array = np.array([1, 2, 3, 4, 5]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtan2()
|
||||
output = net(input_x, input_x)
|
||||
print(output)
|
||||
expect = np.arctan2(np_array, np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAtanh(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAtanh, self).__init__()
|
||||
self.atanh = P.Atanh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.atanh(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atanh():
|
||||
np_array = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtanh()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arctanh(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetCosh(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetCosh, self).__init__()
|
||||
self.cosh = P.Cosh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.cosh(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_cosh():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetCosh()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.cosh(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetSinh(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSinh, self).__init__()
|
||||
self.sinh = P.Sinh()
|
||||
|
||||
def construct(self, x):
|
||||
return self.sinh(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sinh():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetSinh()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.sinh(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
Loading…
Reference in new issue