10:00 26/5 clean pylint

pull/1356/head
Yang 5 years ago
parent 93fc82b8f7
commit abca62f407

@ -34,7 +34,7 @@ def use_filereader(mindrecord):
num_consumer=4,
columns=columns_list)
num_iter = 0
for index, item in enumerate(reader.get_next()):
for _, _ in enumerate(reader.get_next()):
num_iter += 1
print_log(num_iter)
end = time.time()
@ -48,7 +48,7 @@ def use_minddataset(mindrecord):
columns_list=columns_list,
num_parallel_workers=4)
num_iter = 0
for item in data_set.create_dict_iterator():
for _ in data_set.create_dict_iterator():
num_iter += 1
print_log(num_iter)
end = time.time()
@ -64,7 +64,7 @@ def use_tfrecorddataset(tfrecord):
shuffle=ds.Shuffle.GLOBAL)
data_set = data_set.shuffle(10000)
num_iter = 0
for item in data_set.create_dict_iterator():
for _ in data_set.create_dict_iterator():
num_iter += 1
print_log(num_iter)
end = time.time()
@ -87,7 +87,7 @@ def use_tensorflow_tfrecorddataset(tfrecord):
num_parallel_reads=4)
data_set = data_set.map(_parse_record, num_parallel_calls=4)
num_iter = 0
for item in data_set.__iter__():
for _ in data_set.__iter__():
num_iter += 1
print_log(num_iter)
end = time.time()
@ -96,18 +96,18 @@ def use_tensorflow_tfrecorddataset(tfrecord):
if __name__ == '__main__':
# use MindDataset
mindrecord = './imagenet.mindrecord00'
use_minddataset(mindrecord)
mindrecord_test = './imagenet.mindrecord00'
use_minddataset(mindrecord_test)
# use TFRecordDataset
tfrecord = ['imagenet.tfrecord00', 'imagenet.tfrecord01', 'imagenet.tfrecord02', 'imagenet.tfrecord03',
'imagenet.tfrecord04', 'imagenet.tfrecord05', 'imagenet.tfrecord06', 'imagenet.tfrecord07',
'imagenet.tfrecord08', 'imagenet.tfrecord09', 'imagenet.tfrecord10', 'imagenet.tfrecord11',
'imagenet.tfrecord12', 'imagenet.tfrecord13', 'imagenet.tfrecord14', 'imagenet.tfrecord15']
use_tfrecorddataset(tfrecord)
tfrecord_test = ['imagenet.tfrecord00', 'imagenet.tfrecord01', 'imagenet.tfrecord02', 'imagenet.tfrecord03',
'imagenet.tfrecord04', 'imagenet.tfrecord05', 'imagenet.tfrecord06', 'imagenet.tfrecord07',
'imagenet.tfrecord08', 'imagenet.tfrecord09', 'imagenet.tfrecord10', 'imagenet.tfrecord11',
'imagenet.tfrecord12', 'imagenet.tfrecord13', 'imagenet.tfrecord14', 'imagenet.tfrecord15']
use_tfrecorddataset(tfrecord_test)
# use TensorFlow TFRecordDataset
use_tensorflow_tfrecorddataset(tfrecord)
use_tensorflow_tfrecorddataset(tfrecord_test)
# use FileReader
# use_filereader(mindrecord)

@ -29,7 +29,7 @@ def test_case_0():
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(input_column_names=col, output_column_names="out", operation=(lambda x: x + x))
ds1 = ds1.map(input_columns=col, output_columns="out", operations=(lambda x: x + x))
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(): # each data is a dictionary
@ -49,7 +49,7 @@ def test_case_1():
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(input_column_names=col, output_column_names=["out0", "out1"], operation=(lambda x: (x, x + x)))
ds1 = ds1.map(input_columns=col, output_columns=["out0", "out1"], operations=(lambda x: (x, x + x)))
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(): # each data is a dictionary
@ -72,7 +72,7 @@ def test_case_2():
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(input_column_names=col, output_column_names="out", operation=(lambda x, y: x + y))
ds1 = ds1.map(input_columns=col, output_columns="out", operations=(lambda x, y: x + y))
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(): # each data is a dictionary
@ -93,8 +93,8 @@ def test_case_3():
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(input_column_names=col, output_column_names=["out0", "out1", "out2"],
operation=(lambda x, y: (x, x + y, x + x + y)))
ds1 = ds1.map(input_columns=col, output_columns=["out0", "out1", "out2"],
operations=(lambda x, y: (x, x + y, x + x + y)))
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(): # each data is a dictionary
@ -119,8 +119,8 @@ def test_case_4():
# apply dataset operations
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds1 = ds1.map(input_column_names=col, output_column_names=["out0", "out1", "out2"], num_parallel_workers=4,
operation=(lambda x, y: (x, x + y, x + x + y)))
ds1 = ds1.map(input_columns=col, output_columns=["out0", "out1", "out2"], num_parallel_workers=4,
operations=(lambda x, y: (x, x + y, x + x + y)))
print("************** Output Tensor *****************")
for data in ds1.create_dict_iterator(): # each data is a dictionary

@ -22,11 +22,11 @@ def create_data_cache_dir():
cwd = os.getcwd()
target_directory = os.path.join(cwd, "data_cache")
try:
if not (os.path.exists(target_directory)):
if not os.path.exists(target_directory):
os.mkdir(target_directory)
except OSError:
print("Creation of the directory %s failed" % target_directory)
return target_directory;
return target_directory
def download_and_uncompress(files, source_url, target_directory, is_tar=False):
@ -53,13 +53,13 @@ def download_and_uncompress(files, source_url, target_directory, is_tar=False):
def download_mnist(target_directory=None):
if target_directory == None:
if target_directory is None:
target_directory = create_data_cache_dir()
##create mnst directory
target_directory = os.path.join(target_directory, "mnist")
try:
if not (os.path.exists(target_directory)):
if not os.path.exists(target_directory):
os.mkdir(target_directory)
except OSError:
print("Creation of the directory %s failed" % target_directory)
@ -78,14 +78,14 @@ CIFAR_URL = "https://www.cs.toronto.edu/~kriz/"
def download_cifar(target_directory, files, directory_from_tar):
if target_directory == None:
if target_directory is None:
target_directory = create_data_cache_dir()
download_and_uncompress([files], CIFAR_URL, target_directory, is_tar=True)
##if target dir was specify move data from directory created by tar
##and put data into target dir
if target_directory != None:
if target_directory is not None:
tar_dir_full_path = os.path.join(target_directory, directory_from_tar)
all_files = os.path.join(tar_dir_full_path, "*")
cmd = "mv " + all_files + " " + target_directory

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import mindspore._c_dataengine as cde
import numpy as np
import mindspore._c_dataengine as cde
def test_shape():
x = [2, 3]

@ -221,7 +221,7 @@ def test_apply_exception_case():
try:
data2 = data1.apply(dataset_fn)
data3 = data1.apply(dataset_fn)
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
for _, _ in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
pass
assert False
except ValueError:

@ -35,10 +35,10 @@ def test_case_dataset_cifar10():
data1 = ds.Cifar10Dataset(DATA_DIR_10, 100)
num_iter = 0
for item in data1.create_dict_iterator():
for _ in data1.create_dict_iterator():
# in this example, each dictionary has keys "image" and "label"
num_iter += 1
assert (num_iter == 100)
assert num_iter == 100
def test_case_dataset_cifar100():
@ -50,10 +50,10 @@ def test_case_dataset_cifar100():
data1 = ds.Cifar100Dataset(DATA_DIR_100, 100)
num_iter = 0
for item in data1.create_dict_iterator():
for _ in data1.create_dict_iterator():
# in this example, each dictionary has keys "image" and "label"
num_iter += 1
assert (num_iter == 100)
assert num_iter == 100
if __name__ == '__main__':

@ -15,10 +15,10 @@
"""
Testing configuration manager
"""
import os
import filecmp
import glob
import numpy as np
import os
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
@ -89,7 +89,7 @@ def test_pipeline():
ds.serialize(data2, "testpipeline2.json")
# check that the generated output is different
assert (filecmp.cmp('testpipeline.json', 'testpipeline2.json'))
assert filecmp.cmp('testpipeline.json', 'testpipeline2.json')
# this test passes currently because our num_parallel_workers don't get updated.

@ -33,9 +33,9 @@ def test_celeba_dataset_label():
logger.info("----------attr--------")
logger.info(item["attr"])
for index in range(len(expect_labels[count])):
assert (item["attr"][index] == expect_labels[count][index])
assert item["attr"][index] == expect_labels[count][index]
count = count + 1
assert (count == 2)
assert count == 2
def test_celeba_dataset_op():
@ -54,7 +54,7 @@ def test_celeba_dataset_op():
logger.info("----------image--------")
logger.info(item["image"])
count = count + 1
assert (count == 4)
assert count == 4
def test_celeba_dataset_ext():
@ -69,9 +69,9 @@ def test_celeba_dataset_ext():
logger.info("----------attr--------")
logger.info(item["attr"])
for index in range(len(expect_labels[count])):
assert (item["attr"][index] == expect_labels[count][index])
assert item["attr"][index] == expect_labels[count][index]
count = count + 1
assert (count == 1)
assert count == 1
def test_celeba_dataset_distribute():
@ -83,7 +83,7 @@ def test_celeba_dataset_distribute():
logger.info("----------attr--------")
logger.info(item["attr"])
count = count + 1
assert (count == 1)
assert count == 1
if __name__ == '__main__':

@ -35,7 +35,7 @@ def test_imagefolder_basic():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 44)
assert num_iter == 44
def test_imagefolder_numsamples():
@ -55,7 +55,7 @@ def test_imagefolder_numsamples():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 10)
assert num_iter == 10
def test_imagefolder_numshards():
@ -75,7 +75,7 @@ def test_imagefolder_numshards():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 11)
assert num_iter == 11
def test_imagefolder_shardid():
@ -95,7 +95,7 @@ def test_imagefolder_shardid():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 11)
assert num_iter == 11
def test_imagefolder_noshuffle():
@ -115,7 +115,7 @@ def test_imagefolder_noshuffle():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 44)
assert num_iter == 44
def test_imagefolder_extrashuffle():
@ -136,7 +136,7 @@ def test_imagefolder_extrashuffle():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 88)
assert num_iter == 88
def test_imagefolder_classindex():
@ -157,11 +157,11 @@ def test_imagefolder_classindex():
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert (item["label"] == golden[num_iter])
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 22)
assert num_iter == 22
def test_imagefolder_negative_classindex():
@ -182,11 +182,11 @@ def test_imagefolder_negative_classindex():
# in this example, each dictionary has keys "image" and "label"
logger.info("image is {}".format(item["image"]))
logger.info("label is {}".format(item["label"]))
assert (item["label"] == golden[num_iter])
assert item["label"] == golden[num_iter]
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 22)
assert num_iter == 22
def test_imagefolder_extensions():
@ -207,7 +207,7 @@ def test_imagefolder_extensions():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 44)
assert num_iter == 44
def test_imagefolder_decode():
@ -228,7 +228,7 @@ def test_imagefolder_decode():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 44)
assert num_iter == 44
def test_sequential_sampler():
@ -255,7 +255,7 @@ def test_sequential_sampler():
num_iter += 1
logger.info("Result: {}".format(result))
assert (result == golden)
assert result == golden
def test_random_sampler():
@ -276,7 +276,7 @@ def test_random_sampler():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 44)
assert num_iter == 44
def test_distributed_sampler():
@ -297,7 +297,7 @@ def test_distributed_sampler():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 5)
assert num_iter == 5
def test_pk_sampler():
@ -318,7 +318,7 @@ def test_pk_sampler():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 12)
assert num_iter == 12
def test_subset_random_sampler():
@ -340,7 +340,7 @@ def test_subset_random_sampler():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 12)
assert num_iter == 12
def test_weighted_random_sampler():
@ -362,7 +362,7 @@ def test_weighted_random_sampler():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 11)
assert num_iter == 11
def test_imagefolder_rename():
@ -382,7 +382,7 @@ def test_imagefolder_rename():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 10)
assert num_iter == 10
data1 = data1.rename(input_columns=["image"], output_columns="image2")
@ -394,7 +394,7 @@ def test_imagefolder_rename():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 10)
assert num_iter == 10
def test_imagefolder_zip():
@ -419,7 +419,7 @@ def test_imagefolder_zip():
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))
assert (num_iter == 10)
assert num_iter == 10
if __name__ == '__main__':

@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.transforms.vision.c_transforms as vision

@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import pytest
import mindspore.dataset as ds
from mindspore import log as logger
@ -30,7 +28,7 @@ def test_tf_file_normal():
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
data1 = data1.repeat(1)
num_iter = 0
for item in data1.create_dict_iterator(): # each data is a dictionary
for _ in data1.create_dict_iterator(): # each data is a dictionary
num_iter += 1
logger.info("Number of data in data1: {}".format(num_iter))

@ -16,7 +16,6 @@ import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
DATA_FILE = "../data/dataset/testManifestData/test.manifest"
@ -34,9 +33,9 @@ def test_manifest_dataset_train():
cat_count = cat_count + 1
elif item["label"].size == 1 and item["label"] == 1:
dog_count = dog_count + 1
assert (cat_count == 2)
assert (dog_count == 1)
assert (count == 4)
assert cat_count == 2
assert dog_count == 1
assert count == 4
def test_manifest_dataset_eval():
@ -46,36 +45,36 @@ def test_manifest_dataset_eval():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if item["label"] != 0 and item["label"] != 1:
assert (0)
assert (count == 2)
assert 0
assert count == 2
def test_manifest_dataset_class_index():
class_indexing = {"dog": 11}
data = ds.ManifestDataset(DATA_FILE, decode=True, class_indexing=class_indexing)
out_class_indexing = data.get_class_indexing()
assert (out_class_indexing == {"dog": 11})
assert out_class_indexing == {"dog": 11}
count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if item["label"] != 11:
assert (0)
assert (count == 1)
assert 0
assert count == 1
def test_manifest_dataset_get_class_index():
data = ds.ManifestDataset(DATA_FILE, decode=True)
class_indexing = data.get_class_indexing()
assert (class_indexing == {'cat': 0, 'dog': 1, 'flower': 2})
assert class_indexing == {'cat': 0, 'dog': 1, 'flower': 2}
data = data.shuffle(4)
class_indexing = data.get_class_indexing()
assert (class_indexing == {'cat': 0, 'dog': 1, 'flower': 2})
assert class_indexing == {'cat': 0, 'dog': 1, 'flower': 2}
count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
assert (count == 4)
assert count == 4
def test_manifest_dataset_multi_label():
@ -83,10 +82,10 @@ def test_manifest_dataset_multi_label():
count = 0
expect_label = [1, 0, 0, [0, 2]]
for item in data.create_dict_iterator():
assert (item["label"].tolist() == expect_label[count])
assert item["label"].tolist() == expect_label[count]
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
assert (count == 4)
assert count == 4
def multi_label_hot(x):
@ -109,7 +108,7 @@ def test_manifest_dataset_multi_label_onehot():
data = data.batch(2)
count = 0
for item in data.create_dict_iterator():
assert (item["label"].tolist() == expect_label[count])
assert item["label"].tolist() == expect_label[count]
logger.info("item[image] is {}".format(item["image"]))
count = count + 1

@ -27,7 +27,7 @@ def test_imagefolder_shardings(print_res=False):
res = []
for item in data1.create_dict_iterator(): # each data is a dictionary
res.append(item["label"].item())
if (print_res):
if print_res:
logger.info("labels of dataset: {}".format(res))
return res
@ -39,12 +39,12 @@ def test_imagefolder_shardings(print_res=False):
assert (sharding_config(2, 0, 55, False, dict()) == [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3]) # 22 rows
assert (sharding_config(2, 1, 55, False, dict()) == [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3]) # 22 rows
# total 22 in dataset rows because of class indexing which takes only 2 folders
assert (len(sharding_config(4, 0, None, True, {"class1": 111, "class2": 999})) == 6)
assert (len(sharding_config(4, 2, 3, True, {"class1": 111, "class2": 999})) == 3)
assert len(sharding_config(4, 0, None, True, {"class1": 111, "class2": 999})) == 6
assert len(sharding_config(4, 2, 3, True, {"class1": 111, "class2": 999})) == 3
# test with repeat
assert (sharding_config(4, 0, 12, False, dict(), 3) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3] * 3)
assert (sharding_config(4, 0, 5, False, dict(), 5) == [0, 0, 0, 1, 1] * 5)
assert (len(sharding_config(5, 1, None, True, {"class1": 111, "class2": 999}, 4)) == 20)
assert len(sharding_config(5, 1, None, True, {"class1": 111, "class2": 999}, 4)) == 20
def test_tfrecord_shardings1(print_res=False):
@ -176,8 +176,8 @@ def test_voc_shardings(print_res=False):
# then takes the first 2 bc num_samples = 2
assert (sharding_config(3, 2, 2, False, 4) == [2268, 607] * 4)
# test that each epoch, each shard_worker returns a different sample
assert (len(sharding_config(2, 0, None, True, 1)) == 5)
assert (len(set(sharding_config(11, 0, None, True, 10))) > 1)
assert len(sharding_config(2, 0, None, True, 1)) == 5
assert len(set(sharding_config(11, 0, None, True, 10))) > 1
def test_cifar10_shardings(print_res=False):
@ -196,8 +196,8 @@ def test_cifar10_shardings(print_res=False):
# 60000 rows in total. CIFAR reads everything in memory which would make each test case very slow
# therefore, only 2 test cases for now.
assert (sharding_config(10000, 9999, 7, False, 1) == [9])
assert (sharding_config(10000, 0, 4, False, 3) == [0, 0, 0])
assert sharding_config(10000, 9999, 7, False, 1) == [9]
assert sharding_config(10000, 0, 4, False, 3) == [0, 0, 0]
def test_cifar100_shardings(print_res=False):

@ -27,7 +27,7 @@ def test_textline_dataset_one_file():
for i in data.create_dict_iterator():
logger.info("{}".format(i["text"]))
count += 1
assert (count == 3)
assert count == 3
def test_textline_dataset_all_file():
@ -36,7 +36,7 @@ def test_textline_dataset_all_file():
for i in data.create_dict_iterator():
logger.info("{}".format(i["text"]))
count += 1
assert (count == 5)
assert count == 5
def test_textline_dataset_totext():
@ -46,8 +46,8 @@ def test_textline_dataset_totext():
line = ["This is a text file.", "Another file.",
"Be happy every day.", "End of file.", "Good luck to everyone."]
for i in data.create_dict_iterator():
str = i["text"].item().decode("utf8")
assert (str == line[count])
strs = i["text"].item().decode("utf8")
assert strs == line[count]
count += 1
assert (count == 5)
# Restore configuration num_parallel_workers
@ -57,17 +57,17 @@ def test_textline_dataset_totext():
def test_textline_dataset_num_samples():
data = ds.TextFileDataset(DATA_FILE, num_samples=2)
count = 0
for i in data.create_dict_iterator():
for _ in data.create_dict_iterator():
count += 1
assert (count == 2)
assert count == 2
def test_textline_dataset_distribution():
data = ds.TextFileDataset(DATA_ALL_FILE, num_shards=2, shard_id=1)
count = 0
for i in data.create_dict_iterator():
for _ in data.create_dict_iterator():
count += 1
assert (count == 3)
assert count == 3
def test_textline_dataset_repeat():
@ -78,16 +78,16 @@ def test_textline_dataset_repeat():
"This is a text file.", "Be happy every day.", "Good luck to everyone.",
"This is a text file.", "Be happy every day.", "Good luck to everyone."]
for i in data.create_dict_iterator():
str = i["text"].item().decode("utf8")
assert (str == line[count])
strs = i["text"].item().decode("utf8")
assert strs == line[count]
count += 1
assert (count == 9)
assert count == 9
def test_textline_dataset_get_datasetsize():
data = ds.TextFileDataset(DATA_FILE)
size = data.get_dataset_size()
assert (size == 3)
assert size == 3
if __name__ == "__main__":

@ -15,9 +15,8 @@
"""
Testing Decode op in DE
"""
import cv2
import numpy as np
from util import diff_mse
import cv2
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision

@ -88,7 +88,7 @@ def test_filter_by_generator_with_repeat():
ret_data.append(item["data"])
assert num_iter == 44
for i in range(4):
for ii in range(len(expected_rs)):
for ii, _ in enumerate(expected_rs):
index = i * len(expected_rs) + ii
assert ret_data[index] == expected_rs[ii]
@ -106,7 +106,7 @@ def test_filter_by_generator_with_repeat_after():
ret_data.append(item["data"])
assert num_iter == 44
for i in range(4):
for ii in range(len(expected_rs)):
for ii, _ in enumerate(expected_rs):
index = i * len(expected_rs) + ii
assert ret_data[index] == expected_rs[ii]
@ -167,7 +167,7 @@ def test_filter_by_generator_with_shuffle():
dataset_s = dataset.shuffle(4)
dataset_f = dataset_s.filter(predicate=filter_func_shuffle, num_parallel_workers=4)
num_iter = 0
for item in dataset_f.create_dict_iterator():
for _ in dataset_f.create_dict_iterator():
num_iter += 1
assert num_iter == 21
@ -184,7 +184,7 @@ def test_filter_by_generator_with_shuffle_after():
dataset_f = dataset.filter(predicate=filter_func_shuffle_after, num_parallel_workers=4)
dataset_s = dataset_f.shuffle(4)
num_iter = 0
for item in dataset_s.create_dict_iterator():
for _ in dataset_s.create_dict_iterator():
num_iter += 1
assert num_iter == 21
@ -258,8 +258,7 @@ def filter_func_map(col1, col2):
def filter_func_map_part(col1):
if col1 < 3:
return True
else:
return False
return False
def filter_func_map_all(col1, col2):
@ -276,7 +275,7 @@ def func_map(data_col1, data_col2):
def func_map_part(data_col1):
return (data_col1)
return data_col1
# test with map
@ -473,7 +472,6 @@ def test_filte_case_dataset_cifar10():
ds.config.load('../data/dataset/declient_filter.cfg')
dataset_c = ds.Cifar10Dataset(dataset_dir=DATA_DIR_10, num_samples=100000, shuffle=False)
dataset_f1 = dataset_c.filter(input_columns=["image", "label"], predicate=filter_func_cifar, num_parallel_workers=1)
num_iter = 0
for item in dataset_f1.create_dict_iterator():
# in this example, each dictionary has keys "image" and "label"
assert item["label"] % 3 == 0

@ -184,7 +184,7 @@ def test_case_6():
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
mstype.uint64, mstype.float32, mstype.float64]
for i in range(len(np_types)):
for i, _ in enumerate(np_types):
type_tester_with_type_check(np_types[i], de_types[i])
@ -219,7 +219,7 @@ def test_case_7():
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
mstype.uint64, mstype.float32, mstype.float64]
for i in range(len(np_types)):
for i, _ in enumerate(np_types):
type_tester_with_type_check_2c(np_types[i], [None, de_types[i]])
@ -526,7 +526,7 @@ def test_sequential_sampler():
def test_random_sampler():
source = [(np.array([x]),) for x in range(64)]
ds1 = ds.GeneratorDataset(source, ["data"], shuffle=True)
for data in ds1.create_dict_iterator(): # each data is a dictionary
for _ in ds1.create_dict_iterator(): # each data is a dictionary
pass
@ -611,7 +611,7 @@ def test_schema():
de_types = [mstype.int8, mstype.int16, mstype.int32, mstype.int64, mstype.uint8, mstype.uint16, mstype.uint32,
mstype.uint64, mstype.float32, mstype.float64]
for i in range(len(np_types)):
for i, _ in enumerate(np_types):
type_tester_with_type_check_2c_schema(np_types[i], [de_types[i], de_types[i]])
@ -630,8 +630,7 @@ def manual_test_keyborad_interrupt():
return 1024
ds1 = ds.GeneratorDataset(MyDS(), ["data"], num_parallel_workers=4).repeat(2)
i = 0
for data in ds1.create_dict_iterator(): # each data is a dictionary
for _ in ds1.create_dict_iterator(): # each data is a dictionary
pass

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import copy
import numpy as np
import pytest

@ -320,7 +320,7 @@ def test_cv_minddataset_issue_888(add_and_remove_cv_file):
data = data.shuffle(2)
data = data.repeat(9)
num_iter = 0
for item in data.create_dict_iterator():
for _ in data.create_dict_iterator():
num_iter += 1
assert num_iter == 18
@ -572,7 +572,7 @@ def test_cv_minddataset_reader_basic_tutorial_5_epoch(add_and_remove_cv_file):
num_readers = 4
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers)
assert data_set.get_dataset_size() == 10
for epoch in range(5):
for _ in range(5):
num_iter = 0
for data in data_set:
logger.info("data is {}".format(data))
@ -603,7 +603,7 @@ def test_cv_minddataset_reader_basic_tutorial_5_epoch_with_batch(add_and_remove_
data_set = data_set.batch(2)
assert data_set.get_dataset_size() == 5
for epoch in range(5):
for _ in range(5):
num_iter = 0
for data in data_set:
logger.info("data is {}".format(data))

@ -91,7 +91,7 @@ def test_invalid_mindrecord():
with pytest.raises(Exception, match="MindRecordOp init failed"):
data_set = ds.MindDataset('dummy.mindrecord', columns_list, num_readers)
num_iter = 0
for item in data_set.create_dict_iterator():
for _ in data_set.create_dict_iterator():
num_iter += 1
assert num_iter == 0
os.remove('dummy.mindrecord')
@ -105,7 +105,7 @@ def test_minddataset_lack_db():
with pytest.raises(Exception, match="MindRecordOp init failed"):
data_set = ds.MindDataset(CV_FILE_NAME, columns_list, num_readers)
num_iter = 0
for item in data_set.create_dict_iterator():
for _ in data_set.create_dict_iterator():
num_iter += 1
assert num_iter == 0
os.remove(CV_FILE_NAME)
@ -119,7 +119,7 @@ def test_cv_minddataset_pk_sample_error_class_column():
with pytest.raises(Exception, match="MindRecordOp launch failed"):
data_set = ds.MindDataset(CV_FILE_NAME, columns_list, num_readers, sampler=sampler)
num_iter = 0
for item in data_set.create_dict_iterator():
for _ in data_set.create_dict_iterator():
num_iter += 1
os.remove(CV_FILE_NAME)
os.remove("{}.db".format(CV_FILE_NAME))

@ -15,8 +15,8 @@
"""
This is the test module for mindrecord
"""
import numpy as np
import os
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger

@ -15,16 +15,10 @@
"""
This is the test module for mindrecord
"""
import collections
import json
import numpy as np
import os
import pytest
import re
import string
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from mindspore.dataset.transforms.vision import Inter
from mindspore.dataset.text import to_str

@ -49,7 +49,7 @@ def test_one_hot_op():
label = data["label"]
logger.info("label is {}".format(label))
logger.info("golden_label is {}".format(golden_label))
assert (label.all() == golden_label.all())
assert label.all() == golden_label.all()
logger.info("====test one hot op ok====")

@ -13,7 +13,6 @@
# limitations under the License.
# ==============================================================================
import matplotlib.pyplot as plt
import numpy as np
import mindspore.dataset as ds
@ -50,6 +49,7 @@ def get_normalized(image_id):
if num_iter == image_id:
return normalize_np(image)
num_iter += 1
return None
def test_normalize_op():

@ -19,7 +19,6 @@ import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save