parent
1fe7bea8de
commit
acec35d4d4
@ -0,0 +1,60 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test ms_function pass non_tensor inputs"""
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, ms_function, Parameter
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, save_graphs=True)
|
||||
|
||||
|
||||
@ms_function
|
||||
def compute(x, y, tuple_p, list_q, dict_w):
|
||||
return x + y - tuple_p[0] + list_q[1] - dict_w["x"]
|
||||
|
||||
|
||||
def test_scalar_compute():
|
||||
int_x = 1
|
||||
int_y = 2
|
||||
p = (3, 4)
|
||||
q = [5, 6]
|
||||
w = {"x": 7, "y": 8}
|
||||
ret = compute(int_x, int_y, p, q, w)
|
||||
assert ret == -1
|
||||
|
||||
|
||||
def test_tensor_compute():
|
||||
tensor_x = Tensor(np.ones((2, 3, 4), np.float32))
|
||||
tensor_y = Tensor(np.ones((2, 3, 4), np.float32) * 2)
|
||||
p = (Tensor(np.ones((2, 3, 4), np.float32) * 3), Tensor(np.ones((2, 3, 4), np.float32) * 4))
|
||||
q = [Tensor(np.ones((2, 3, 4), np.float32) * 5), Tensor(np.ones((2, 3, 4), np.float32) * 6)]
|
||||
w = {"x": Tensor(np.ones((2, 3, 4), np.float32) * 7), "y": Tensor(np.ones((2, 3, 4), np.float32) * 8)}
|
||||
compute(tensor_x, tensor_y, p, q, w)
|
||||
|
||||
|
||||
@ms_function
|
||||
def tensor_reduce(tensor_x, axis, tensor_y):
|
||||
reduce_sum = P.ReduceSum()
|
||||
ret = reduce_sum(tensor_x, axis) + tensor_y
|
||||
return ret
|
||||
|
||||
|
||||
def test_tensor_reduce():
|
||||
tensor_x = Tensor(np.ones((2, 3, 4, 5), np.float32))
|
||||
axis = (0, 1)
|
||||
tensor_y = Parameter(Tensor(np.ones((4, 5), np.float32) * 2))
|
||||
tensor_reduce(tensor_x, axis, tensor_y)
|
Loading…
Reference in new issue