add GPU support to RandomChoiceWithMask

pull/3608/head
TFbunny 5 years ago
parent ade60ad3d3
commit ad8a786b07

@ -0,0 +1,34 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_
#include <cuda_runtime.h>
#include <curand_kernel.h>
#include "runtime/device/gpu/cuda_common.h"
#define BLOCKSIZE 256
#define MAX_DIMENSION 5
template <typename T, typename S>
void CalRandomChoiceWithMask(const int &input_size, const int &input_shape_size, const int &d1, const int &d2,
const int &d3, const int &d4, const int &d5, const int &seedc, const int &count,
const T *input, S *output_index, T *output_mask, S *index_buff, S *mask_buff, S *rank_buff,
S *Tnum_buff, S *tmp_buff, curandState *globalState, cudaStream_t stream);
int RcwmRoundUpPower2(int v);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_RANDOM_CHOICE_WITH_MASK_IMPL_CUH_

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/random/random_choice_with_mask_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(
RandomChoiceWithMask,
KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
RandomChoiceWithMaskGpuKernel, bool, int)
}
} // namespace mindspore

@ -0,0 +1,129 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/random_choice_with_mask_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T, typename S>
class RandomChoiceWithMaskGpuKernel : public GpuKernel {
public:
RandomChoiceWithMaskGpuKernel() : input_shape_size_(0), seedc_(0), input_size_(1), count_(0), ceil_power2_(0) {}
~RandomChoiceWithMaskGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspaces,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input = GetDeviceAddress<T>(inputs, 0);
S *output_index = GetDeviceAddress<S>(outputs, 0);
T *output_mask = GetDeviceAddress<T>(outputs, 1);
S *index_buff = GetDeviceAddress<S>(workspaces, 0);
S *mask_buff = GetDeviceAddress<S>(workspaces, 1);
S *rank_buff = GetDeviceAddress<S>(workspaces, 2);
S *Tnum_buff = GetDeviceAddress<S>(workspaces, 3);
S *tmp_buff = GetDeviceAddress<S>(workspaces, 4);
void *States = GetDeviceAddress<void *>(workspaces, 5);
curandState *devStates = reinterpret_cast<curandState *>(States);
CalRandomChoiceWithMask(input_size_, input_shape_size_, input_shape_5D_[0], input_shape_5D_[1], input_shape_5D_[2],
input_shape_5D_[3], input_shape_5D_[4], seedc_, count_, input, output_index, output_mask,
index_buff, mask_buff, rank_buff, Tnum_buff, tmp_buff, devStates,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but RandomChoiceWithMask needs 1 input.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 2) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but RandomChoiceWithMask has 2 outputs.";
return false;
}
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_shape_size_ = input_shape.size();
if (input_shape_size_ < 1 || input_shape_size_ > MAX_DIMENSION) {
MS_LOG(ERROR) << "Input is " << input_shape_size_
<< "-D, but RandomChoiceWithMask supports only 1-D to 5-D inputs.";
return false;
}
// convert size_t to int
for (auto i = 0; i < input_shape_size_; i++) {
input_shape_5D_.push_back(input_shape[i]);
}
// convert shape to 5D
while (input_shape_5D_.size() != MAX_DIMENSION) {
input_shape_5D_.insert(input_shape_5D_.begin(), 1);
}
// init seedc_
int seed = GetAttr<int>(kernel_node, "seed");
int seed2 = GetAttr<int>(kernel_node, "seed2");
if (seed2 != 0)
seedc_ = seed2;
else if (seed != 0)
seedc_ = seed;
else
seedc_ = time(NULL);
// init memory
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}
count_ = GetAttr<int>(kernel_node, "count");
// upper ceiling for input for ceil_power2
ceil_power2_ = RcwmRoundUpPower2(input_size_);
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_ * sizeof(T));
output_size_list_.push_back(count_ * input_shape_size_ * sizeof(S));
output_size_list_.push_back(count_ * sizeof(T));
workspace_size_list_.push_back(input_size_ * input_shape_size_ * sizeof(S));
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
int blocknum = std::ceil(static_cast<float>(ceil_power2_) / BLOCKSIZE);
workspace_size_list_.push_back(blocknum * sizeof(S));
workspace_size_list_.push_back(ceil_power2_ * sizeof(S));
workspace_size_list_.push_back(ceil_power2_ * sizeof(curandState));
}
private:
int input_shape_size_;
int seedc_;
int input_size_;
int count_;
int ceil_power2_;
std::vector<int> input_shape_5D_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RANDOM_RANDOM_CHOICE_WITH_MASK_GPU_KERNEL_H_

@ -348,13 +348,13 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
seed2 (int): Random seed2. Default: 0.
Inputs:
- **input_x** (Tensor[bool]) - The input tensor.
- **input_x** (Tensor[bool]) - The input tensor. The input tensor rank should be >= 1 and <= 5.
Outputs:
Two tensors, the first one is the index tensor and the other one is the mask tensor.
- **index** (Tensor) - The output has shape between 2-D and 5-D.
- **mask** (Tensor) - The output has shape 1-D.
- **index** (Tensor) - The output shape is 2-D.
- **mask** (Tensor) - The output shape is 1-D.
Examples:
>>> rnd_choice_mask = P.RandomChoiceWithMask()
@ -372,6 +372,7 @@ class RandomChoiceWithMask(PrimitiveWithInfer):
def infer_shape(self, x_shape):
validator.check_integer("input_x rank", len(x_shape), 1, Rel.GE, self.name)
validator.check_integer("input_x rank", len(x_shape), 5, Rel.LE, self.name)
return ([self.count, len(x_shape)], [self.count])
def infer_dtype(self, x_dtype):

@ -0,0 +1,86 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class RCWM_count_in(nn.Cell):
def __init__(self):
super(RCWM_count_in, self).__init__()
self.RCWM_count_in = P.RandomChoiceWithMask(count=4, seed=1)
def construct(self, x):
return self.RCWM_count_in(x)
class RCWM_count_out(nn.Cell):
def __init__(self):
super(RCWM_count_out, self).__init__()
self.RCWM_count_out = P.RandomChoiceWithMask(count=10, seed=1)
def construct(self, x):
return self.RCWM_count_out(x)
class RCWM_3D(nn.Cell):
def __init__(self):
super(RCWM_3D, self).__init__()
self.RCWM_3D = P.RandomChoiceWithMask(count=10, seed=1)
def construct(self, x):
return self.RCWM_3D(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_RCWM_3D():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
input_tensor = Tensor(np.ones([3, 4, 5]).astype(np.bool))
expect1 = [[0, 1, 1], [0, 2, 1], [0, 2, 2], [1, 0, 1], [0, 1, 3], [0, 3, 0], [1, 3, 2], \
[0, 0, 0], [1, 1, 2], [1, 3, 4]]
expect2 = [True, True, True, True, True, True, True, True, True, True]
rcwm = RCWM_3D()
output1, output2 = rcwm(input_tensor)
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_RCWM_count_out():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0], [0, 0], [3, 3], [2, 3], [1, 3], [0, 0], [0, 0]]
expect2 = [True, True, True, True, True, True, True, True, False, False]
rcwm = RCWM_count_out()
output1, output2 = rcwm(input_tensor)
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_RCWM_count_in():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0]]
expect2 = [True, True, True, True]
rcwm = RCWM_count_in()
output1, output2 = rcwm(input_tensor)
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1)
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2)
Loading…
Cancel
Save