|
|
|
@ -57,11 +57,15 @@ After installing MindSpore via the official website, you can start training and
|
|
|
|
|
# run distributed training example
|
|
|
|
|
sh scripts/run_distribute_train.sh pretrained_model.ckpt
|
|
|
|
|
|
|
|
|
|
#setup opencv library
|
|
|
|
|
download pyblind11, opencv3.4,setup opencv3.4
|
|
|
|
|
#download opencv library
|
|
|
|
|
download pyblind11, opencv3.4
|
|
|
|
|
|
|
|
|
|
#make so file
|
|
|
|
|
run src/ETSNET/pse/Makefile; make libadaptor.so
|
|
|
|
|
#install pyblind11 opencv3.4
|
|
|
|
|
setup pyblind11(install the library by the pip command)
|
|
|
|
|
setup opencv3.4(compile source code install the library)
|
|
|
|
|
|
|
|
|
|
#enter the path ,run Makefile to product file
|
|
|
|
|
cd ./src/ETSNET/pse/;make
|
|
|
|
|
|
|
|
|
|
#run test.py
|
|
|
|
|
python test.py --ckpt=pretrained_model.ckpt
|
|
|
|
@ -81,10 +85,10 @@ sh scripts/run_eval_ascend.sh
|
|
|
|
|
├── README.md // descriptions about PSENet
|
|
|
|
|
├── scripts
|
|
|
|
|
├── run_distribute_train.sh // shell script for distributed
|
|
|
|
|
└── eval_ic15.sh // shell script for evaluation
|
|
|
|
|
└── run_eval_ascend.sh // shell script for evaluation
|
|
|
|
|
├── src
|
|
|
|
|
├── __init__.py
|
|
|
|
|
├── generate_hccn_file.py // creating rank.json
|
|
|
|
|
├── generate_hccn_file.py // creating rank.json
|
|
|
|
|
├── ETSNET
|
|
|
|
|
├── __init__.py
|
|
|
|
|
├── base.py // convolution and BN operator
|
|
|
|
@ -127,7 +131,7 @@ sh scripts/run_distribute_train.sh pretrained_model.ckpt
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
The above shell script will run distribute training in the background. You can view the results through the file
|
|
|
|
|
`device[X]/log`. The loss value will be achieved as follows:
|
|
|
|
|
`device[X]/test_*.log`. The loss value will be achieved as follows:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
# grep "epoch: " device_*/loss.log
|
|
|
|
@ -140,6 +144,8 @@ device_1/log:epcoh: 2, step: 40, loss is 0.76629
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## [Evaluation Process](#contents)
|
|
|
|
|
### run test code
|
|
|
|
|
python test.py --ckpt=./device*/ckpt*/ETSNet-*.ckpt
|
|
|
|
|
|
|
|
|
|
### Eval Script for ICDAR2015
|
|
|
|
|
#### Usage
|
|
|
|
@ -161,7 +167,7 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
|
|
|
|
|
| Parameters | PSENet |
|
|
|
|
|
| -------------------------- | ----------------------------------------------------------- |
|
|
|
|
|
| Model Version | Inception V1 |
|
|
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G |
|
|
|
|
|
| Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
|
|
|
|
|
| uploaded Date | 09/15/2020 (month/day/year) |
|
|
|
|
|
| MindSpore Version | 1.0-alpha |
|
|
|
|
|
| Dataset | ICDAR2015 |
|
|
|
|
@ -187,7 +193,7 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
|
|
|
|
|
| MindSpore Version | 1.0-alpha |
|
|
|
|
|
| Dataset | ICDAR2015 |
|
|
|
|
|
| outputs | probability |
|
|
|
|
|
| Accuracy | 1pc: 81%; 8pcs: 81% |
|
|
|
|
|
| Accuracy | 1pc: 81%; 4pcs: 81% |
|
|
|
|
|
|
|
|
|
|
## [How to use](#contents)
|
|
|
|
|
|
|
|
|
|