|
|
|
@ -267,3 +267,65 @@ def test_unique_dynamic():
|
|
|
|
|
assert (x_idx2.asnumpy() == expt_index2).all()
|
|
|
|
|
for i, out in enumerate(x_split2):
|
|
|
|
|
assert (out.asnumpy() == expt_split2[i]).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_unique_1d_int64():
|
|
|
|
|
x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5]).astype(np.int64))
|
|
|
|
|
exp_output = np.array([1, 2, 3, 4, 5]).astype(np.int64)
|
|
|
|
|
exp_idx = np.array([3, 4, 0, 1, 2, 2, 3, 4]).astype(np.int64)
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
net = NetUnique()
|
|
|
|
|
x_unique, x_idx = net(x)
|
|
|
|
|
print(x_unique)
|
|
|
|
|
print(x_idx)
|
|
|
|
|
assert (x_unique.asnumpy() == exp_output).all()
|
|
|
|
|
assert (x_idx.asnumpy() == exp_idx).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_unique_1d_sorted_int64():
|
|
|
|
|
x = Tensor(np.array([1, 1, 2, 4, 4, 4, 7, 8, 8]).astype(np.int64))
|
|
|
|
|
exp_output = np.array([1, 2, 4, 7, 8]).astype(np.int64)
|
|
|
|
|
exp_idx = np.array([0, 0, 1, 2, 2, 2, 3, 4, 4]).astype(np.int64)
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
net = NetUnique()
|
|
|
|
|
x_unique, x_idx = net(x)
|
|
|
|
|
assert (x_unique.asnumpy() == exp_output).all()
|
|
|
|
|
assert (x_idx.asnumpy() == exp_idx).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_unique_zeros_int64():
|
|
|
|
|
x = Tensor(np.zeros(1000).astype(np.int64))
|
|
|
|
|
exp_output = np.zeros(1).astype(np.int64)
|
|
|
|
|
exp_idx = np.zeros(1000).astype(np.int64)
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
net = NetUnique()
|
|
|
|
|
x_unique, x_idx = net(x)
|
|
|
|
|
assert (x_unique.asnumpy() == exp_output).all()
|
|
|
|
|
assert (x_idx.asnumpy() == exp_idx).all()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
|
@pytest.mark.platform_x86_gpu_training
|
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
|
def test_unique_large_int64():
|
|
|
|
|
x_np1 = np.arange(100)
|
|
|
|
|
x_np2 = np.arange(100, 200)
|
|
|
|
|
x_np3 = np.arange(200, 300)
|
|
|
|
|
x_np = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3))
|
|
|
|
|
x = Tensor(x_np.astype(np.int64))
|
|
|
|
|
exp_output = np.arange(300).astype(np.int64)
|
|
|
|
|
exp_idx = np.concatenate((x_np1, x_np2, x_np3, x_np1, x_np2, x_np3, x_np1, x_np2, x_np3)).astype(np.int64)
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
net = NetUnique()
|
|
|
|
|
x_unique, x_idx = net(x)
|
|
|
|
|
assert (x_unique.asnumpy() == exp_output).all()
|
|
|
|
|
assert (x_idx.asnumpy() == exp_idx).all()
|
|
|
|
|