|
|
|
@ -149,3 +149,20 @@ def test_prelu_parallel_success3():
|
|
|
|
|
w = Tensor(np.random.rand(16),dtype=ms.float32)
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
_executor.compile(net, x, y, w)
|
|
|
|
|
|
|
|
|
|
def test_prelu_parallel_success4():
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
def __init__(self, strategy):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.prelu = P.PReLU().set_strategy(strategy)
|
|
|
|
|
def construct(self, x, y):
|
|
|
|
|
out = self.prelu(x, y)
|
|
|
|
|
return out
|
|
|
|
|
context.reset_auto_parallel_context()
|
|
|
|
|
context.set_auto_parallel_context(device_num=64, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy = ((2, 4, 4, 2), (4, ))
|
|
|
|
|
x = Tensor(np.random.rand(4, 16, 32, 64),dtype=ms.float32)
|
|
|
|
|
w = Tensor(np.random.rand(16),dtype=ms.float32)
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy)))
|
|
|
|
|
_executor.compile(net, x, w)
|
|
|
|
|