pull/1315/head
z00478463 5 years ago
parent da62a44d85
commit b64c848ba7

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CrossEntropy"""
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
@ -22,6 +22,7 @@ from mindspore.ops import operations as P
class CrossEntropy(_Loss):
"""CrossEntropy"""
def __init__(self, smooth_factor=0., num_classes=1000):
super(CrossEntropy, self).__init__()
self.onehot = P.OneHot()

@ -13,7 +13,7 @@
# limitations under the License.
# ============================================================================
from mindspore.ops.op_info_register import op_info_register
"""batch_matmul_impl"""
@op_info_register("""{
"op_name": "CusBatchMatMul",
@ -71,4 +71,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusBatchMatMul(input_x1, input_x2, output, transpose_a=False, transpose_b=True, kernel_name="batchmatmul"):
"""CusBatchMatMul"""
return

@ -13,7 +13,7 @@
# limitations under the License.
# ============================================================================
from mindspore.ops.op_info_register import op_info_register
"""CusCholeskyTrsm"""
@op_info_register("""{
"op_name": "CusCholeskyTrsm",
@ -59,4 +59,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusCholeskyTrsm(input_x, output, kernel_name):
"""CusCholeskyTrsm"""
return

@ -12,11 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusBatchMatMul"""
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C
# y = x^2
class CusBatchMatMul(PrimitiveWithInfer):
"""CusMatMulCube definition"""
@ -35,4 +34,5 @@ class CusBatchMatMul(PrimitiveWithInfer):
return data1_shape
def infer_dtype(self, data1_dtype, data2_dtype):
return data1_dtype
return data1_dtype

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusCholeskyTrsm"""
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
@ -24,11 +25,14 @@ class CusCholeskyTrsm(PrimitiveWithInfer):
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
def infer_shape(self, data1_shape):
m, n = data1_shape
ll = []
m, _ = data1_shape
if m >= 128:
return [m // 128, 128, 128]
ll = [m // 128, 128, 128]
else:
return [1, 64, 64]
ll = [1, 64, 64]
return ll
def infer_dtype(self, data1_dtype):
return data1_dtype
return data1_dtype

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusFusedAbsMax1"""
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C
@ -32,10 +33,13 @@ class CusFusedAbsMax1(PrimitiveWithInfer):
return bprop
def infer_shape(self, data1_shape):
ll = []
if len(data1_shape) == 2:
return [1, ]
ll = [1,]
else:
return [32, 64]
ll = [32, 64]
return ll
def infer_dtype(self, data1_dtype):
return data1_dtype

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusImg2Col"""
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C
@ -49,3 +49,4 @@ class CusImg2Col(PrimitiveWithInfer):
def infer_dtype(self, data1_dtype):
return data1_dtype

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusMatMulCube"""
import mindspore as ms
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C
@ -37,11 +38,11 @@ class CusMatMulCube(PrimitiveWithInfer):
def infer_shape(self, data1_shape, data2_shape):
# shape = [1, data1_shape[1], data2_shape[2], 16, 16]
# return shape
if self.transpose_a == True:
if self.transpose_a:
k1, m = data1_shape
else:
m, k1 = data1_shape
if self.transpose_b == True:
if self.transpose_b:
n, k2 = data2_shape
else:
k2, n = data2_shape
@ -51,3 +52,4 @@ class CusMatMulCube(PrimitiveWithInfer):
def infer_dtype(self, data1_dtype, data2_dtype):
return ms.common.dtype.tensor_type(getattr(ms, "float32"))

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusMatMulCubeDenseLeft"""
import mindspore as ms
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusMatMulCubeFraczRightMul"""
import mindspore as ms
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusMatrixCombine"""
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops.composite import multitype_ops as C

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusFusedAbsMax1"""
from mindspore.ops.op_info_register import op_info_register
@ -65,4 +65,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusFusedAbsMax1(input_x, output, origin_shape=None, kernel_name="fused_abs_max1"):
"""CusFusedAbsMax1"""
return

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusImg2ColNC1HWC0"""
from mindspore.ops.op_info_register import op_info_register
@ -83,4 +83,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusImg2ColNC1HWC0(input_x, output, ksizes, strides, dilates, padding, kernel_name="img2col"):
"""CusImg2ColNC1HWC0"""
return

@ -2,11 +2,11 @@
# -*- coding:utf-8 -*-
"""
copyright 2020 Huawei Technologies Co., Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
@ -14,7 +14,7 @@ distributed under the License == distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
matmul
"""
from __future__ import absolute_import
@ -98,4 +98,5 @@ NoneType = type(None)
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
kernel_name="matmulcube"):
"""CusMatMulCubeDenseLeft"""
return

@ -2,19 +2,19 @@
# -*- coding:utf-8 -*-
"""
copyright 2020 Huawei Technologies Co., Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License == distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
matmul
"""
from __future__ import absolute_import
@ -99,4 +99,5 @@ NoneType = type(None)
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
def CusMatMulCubeFraczLeftCast(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
kernel_name="CusMatMulCubeFraczLeftCast"):
"""CusMatMulCubeFraczLeftCast"""
return

@ -2,19 +2,19 @@
# -*- coding:utf-8 -*-
"""
copyright 2020 Huawei Technologies Co., Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License == distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
matmul
"""
from __future__ import absolute_import

@ -2,19 +2,19 @@
# -*- coding:utf-8 -*-
"""
copyright 2020 Huawei Technologies Co., Ltd
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License == distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
matmul
"""
from __future__ import absolute_import
@ -110,4 +110,5 @@ NoneType = type(None)
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
def CusMatMulCube(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
"""CusMatMulCube"""
return

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusMatrixCombine"""
from mindspore.ops.op_info_register import op_info_register
@ -59,4 +59,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusMatrixCombine(input_x, output, kernel_name="matrix_combine"):
"""CusMatrixCombine"""
return

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""CusTranspose02314"""
from mindspore.ops.op_info_register import op_info_register
@ -59,4 +59,5 @@ from mindspore.ops.op_info_register import op_info_register
]
}""")
def CusTranspose02314(input_x, output, kernel_name="transpose021354"):
"""CusTranspose02314"""
return

@ -19,12 +19,14 @@ import numpy as np
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
"""linear_warmup_lr"""
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
lr = float(init_lr) + lr_inc * current_step
return lr
def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
"""linear_warmup_lr"""
base_lr = lr
warmup_init_lr = 0
total_steps = int(max_epoch * steps_per_epoch)
@ -44,6 +46,7 @@ def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, et
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
"""warmup_cosine_annealing_lr"""
base_lr = lr
warmup_init_lr = 0
total_steps = int(max_epoch * steps_per_epoch * 0.99)

@ -25,17 +25,17 @@ from mindspore.train.parallel_utils import ParallelMode
class DatasetHelper:
"""
Help function to use the Minddata dataset.
According to different context, change the iter of dataset, to use the same for loop in different context.
Note:
The iter of DatasetHelper will give one epoch data.
Args:
dataset (DataSet): The dataset.
dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data from host.
Default: True.
Examples:
>>> dataset_helper = DatasetHelper(dataset)
>>> for inputs in dataset_helper:

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""grad_reducer_thor"""
import mindspore.common.dtype as mstype
from mindspore.communication.management import GlobalComm, get_group_size
from mindspore.nn.cell import Cell

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save