|
|
|
@ -54,11 +54,10 @@ def test_matmul_equal():
|
|
|
|
|
out = self.equal(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (4, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
@ -78,11 +77,10 @@ def test_matmul_not_equal():
|
|
|
|
|
out = self.notequal(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (4, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
@ -102,11 +100,10 @@ def test_matmul_not_equal_repeated_calculation():
|
|
|
|
|
out = self.notequal(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 1), (4, 1))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
@ -126,11 +123,10 @@ def test_matmul_maximum():
|
|
|
|
|
out = self.maximum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (4, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
@ -150,11 +146,10 @@ def test_matmul_maximum_broadcast():
|
|
|
|
|
out = self.maximum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (2, ))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
@ -174,13 +169,102 @@ def test_matmul_maximum_broadcast2():
|
|
|
|
|
out = self.maximum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 4), (4, 1))
|
|
|
|
|
strategy2 = ((4, 1), (1, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
|
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_matmul_minimum():
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
def __init__(self, strategy1, strategy2):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
|
|
|
|
self.minimum = P.Minimum().set_strategy(strategy2)
|
|
|
|
|
|
|
|
|
|
def construct(self, x, y, b):
|
|
|
|
|
out = self.matmul(x, y)
|
|
|
|
|
out = self.minimum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (4, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
|
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_matmul_minimum_broadcast():
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
def __init__(self, strategy1, strategy2):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
|
|
|
|
self.minimum = P.Maximum().set_strategy(strategy2)
|
|
|
|
|
|
|
|
|
|
def construct(self, x, y, b):
|
|
|
|
|
out = self.matmul(x, y)
|
|
|
|
|
out = self.minimum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 2), (2, 2))
|
|
|
|
|
strategy2 = ((4, 2), (2, ))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
|
|
|
|
b = Tensor(np.ones([64]), dtype=ms.float32)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_matmul_minimum_broadcast2():
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
def __init__(self, strategy1, strategy2):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.matmul = P.MatMul().set_strategy(strategy1)
|
|
|
|
|
self.minimum = P.Minimum().set_strategy(strategy2)
|
|
|
|
|
|
|
|
|
|
def construct(self, x, y, b):
|
|
|
|
|
out = self.matmul(x, y)
|
|
|
|
|
out = self.minimum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel")
|
|
|
|
|
strategy1 = ((2, 4), (4, 1))
|
|
|
|
|
strategy2 = ((4, 1), (1, 2))
|
|
|
|
|
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
|
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_matmul_minimum_auto_parallel():
|
|
|
|
|
class Net(nn.Cell):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.matmul = P.MatMul()
|
|
|
|
|
self.minimum = P.Minimum()
|
|
|
|
|
|
|
|
|
|
def construct(self, x, y, b):
|
|
|
|
|
out = self.matmul(x, y)
|
|
|
|
|
out = self.minimum(out, b)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel")
|
|
|
|
|
net = GradWrap(NetWithLoss(Net()))
|
|
|
|
|
|
|
|
|
|
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|
|
|
|
y = Tensor(np.ones([32, 1]), dtype=ms.float32)
|
|
|
|
|
b = Tensor(np.ones([1, 64]), dtype=ms.float32)
|
|
|
|
|
_executor.compile(net, x, y, b)
|
|
|
|
|