!1312 support vm for erfc

Merge pull request !1312 from jiangjinsheng/vm_erfc
pull/1312/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit b96a2ed816

@ -361,6 +361,23 @@ def get_bprop_erf(self):
return bprop
@bprop_getters.register(P.Erfc)
def get_bprop_erfc(self):
"""Grad definition for `Erfc` operation."""
exp = P.Exp()
square = P.Square()
sqrt = P.Sqrt()
cast = P.Cast()
dtype = P.DType()
def bprop(x, out, dout):
half_root_pi = cast(2 / sqrt(F.scalar_to_tensor(np.pi)), dtype(x))
x_square = square(x)
dx = dout * (-half_root_pi * exp(-x_square))
return (dx,)
return bprop
@bprop_getters.register(P.Pow)
def get_bprop_pow(self):
"""Grad definition for `Pow` operation."""

@ -152,6 +152,7 @@ from .fused_mul_add_n import _fused_mul_add_n_tbe
from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe
from .fill import _fill_op_tbe
from .erf import _erf_op_tbe
from .erfc import _erfc_op_tbe
from .depthwise_conv2d import _depthwise_conv2d_tbe
from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe
from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe

@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Erfc op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
erfc_op_info = TBERegOp("Erfc") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("erfc.so") \
.compute_cost(10) \
.kernel_name("erfc") \
.partial_flag(True) \
.op_pattern("formatAgnostic") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.get_op_info()
@op_info_register(erfc_op_info)
def _erfc_op_tbe():
"""Erfc TBE register"""
return

@ -39,7 +39,7 @@ from .control_ops import ControlDepend, GeSwitch, Merge
from .inner_ops import ScalarCast
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul,
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh,
Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh,
Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd,
LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual,

@ -144,7 +144,7 @@ class Merge(PrimitiveWithInfer):
One and only one of the inputs should be selected as the output
Inputs:
- **inputs** (Tuple) - The data to be merged. All tuple elements should have same shape.
- **inputs** (Tuple) - The data to be merged.
Outputs:
tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element.

@ -1073,6 +1073,36 @@ class Erf(PrimitiveWithInfer):
return x_type
class Erfc(PrimitiveWithInfer):
r"""
Computes the complementary error function of `input_x` element-wise.
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, has the same shape and dtype as the `input_x`.
Examples:
>>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
>>> erfc = P.Erfc()
>>> erfc(input_x)
[1.8427168, 0., 0.1572832, 0.00469124, 0.00002235]
"""
@prim_attr_register
def __init__(self):
"""init Erfc"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_type):
validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
return x_type
class Minimum(_MathBinaryOp):
"""
Computes the element-wise minimum of input tensors.

@ -372,6 +372,15 @@ class Log1pNet(nn.Cell):
return self.log1p(x)
class ErfcNet(nn.Cell):
def __init__(self):
super(ErfcNet, self).__init__()
self.erfc = P.Erfc()
def construct(self, x):
return self.erfc(x)
test_case_math_ops = [
('MatMulGrad', {
'block': GradWrap(NetWithLoss(MatMulNet())),
@ -422,6 +431,11 @@ test_case_math_ops = [
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
'skip': ['backward']}),
('Erfc', {
'block': ErfcNet(),
'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))],
}),
]
test_case_lists = [test_case_math_ops]

Loading…
Cancel
Save