parent
8c20ce4f80
commit
b9ebd9c280
@ -0,0 +1,71 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||
|
||||
init('nccl')
|
||||
rank = get_rank()
|
||||
size = get_group_size()
|
||||
x = np.ones([3, 1, 3, 3]).astype(np.float32) * 0.01 * (rank + 1)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.x1 = Parameter(initializer(Tensor(x), x.shape), name='x1')
|
||||
self.x2 = Parameter(initializer(Tensor(x), x.shape), name='x2')
|
||||
self.x3 = Parameter(initializer(Tensor(x), x.shape), name='x3')
|
||||
|
||||
self.broadcast1 = P.Broadcast(0)
|
||||
self.broadcast2 = P.Broadcast(1)
|
||||
self.broadcast3 = P.Broadcast(2)
|
||||
|
||||
def construct(self):
|
||||
return (self.broadcast1((self.x1,)),
|
||||
self.broadcast2((self.x2,)),
|
||||
self.broadcast3((self.x3,)))
|
||||
|
||||
|
||||
def test_Broadcast():
|
||||
broadcast = Net()
|
||||
output = broadcast()
|
||||
|
||||
expect0 = np.ones([3, 1, 3, 3]).astype(np.float32) * 1
|
||||
expect1 = np.ones([3, 1, 3, 3]).astype(np.float32) * 2
|
||||
expect2 = np.ones([3, 1, 3, 3]).astype(np.float32) * 3
|
||||
|
||||
diff0 = output[0][0].asnumpy() - expect0
|
||||
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
||||
assert np.all(diff0 < error0)
|
||||
assert output[0][0].shape == expect0.shape
|
||||
|
||||
diff1 = output[1][0].asnumpy() - expect1
|
||||
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
||||
assert np.all(diff1 < error1)
|
||||
assert output[1][0].shape == expect1.shape
|
||||
|
||||
diff2 = output[2][0].asnumpy() - expect2
|
||||
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
||||
assert np.all(diff2 < error2)
|
||||
assert output[2][0].shape == expect2.shape
|
Loading…
Reference in new issue