|
|
|
@ -13,23 +13,16 @@
|
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
|
* limitations under the License.
|
|
|
|
|
*/
|
|
|
|
|
#include <utility>
|
|
|
|
|
#include "dataset/kernels/image/uniform_aug_op.h"
|
|
|
|
|
#include "dataset/kernels/py_func_op.h"
|
|
|
|
|
#include "dataset/util/random.h"
|
|
|
|
|
|
|
|
|
|
namespace mindspore {
|
|
|
|
|
namespace dataset {
|
|
|
|
|
const int UniformAugOp::kDefNumOps = 2;
|
|
|
|
|
|
|
|
|
|
UniformAugOp::UniformAugOp(py::list op_list, int32_t num_ops) : num_ops_(num_ops) {
|
|
|
|
|
std::shared_ptr<TensorOp> tensor_op;
|
|
|
|
|
// iterate over the op list, cast them to TensorOp and add them to tensor_op_list_
|
|
|
|
|
for (auto op : op_list) {
|
|
|
|
|
// only C++ op is accepted
|
|
|
|
|
tensor_op = op.cast<std::shared_ptr<TensorOp>>();
|
|
|
|
|
tensor_op_list_.insert(tensor_op_list_.begin(), tensor_op);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
UniformAugOp::UniformAugOp(std::vector<std::shared_ptr<TensorOp>> op_list, int32_t num_ops)
|
|
|
|
|
: tensor_op_list_(op_list), num_ops_(num_ops) {
|
|
|
|
|
rnd_.seed(GetSeed());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -38,37 +31,28 @@ Status UniformAugOp::Compute(const std::vector<std::shared_ptr<Tensor>> &input,
|
|
|
|
|
std::vector<std::shared_ptr<Tensor>> *output) {
|
|
|
|
|
IO_CHECK_VECTOR(input, output);
|
|
|
|
|
|
|
|
|
|
// variables to copy the result to output if it is not already
|
|
|
|
|
std::vector<std::shared_ptr<Tensor>> even_out;
|
|
|
|
|
std::vector<std::shared_ptr<Tensor>> *even_out_ptr = &even_out;
|
|
|
|
|
int count = 1;
|
|
|
|
|
|
|
|
|
|
// randomly select ops to be applied
|
|
|
|
|
std::vector<std::shared_ptr<TensorOp>> selected_tensor_ops;
|
|
|
|
|
std::sample(tensor_op_list_.begin(), tensor_op_list_.end(), std::back_inserter(selected_tensor_ops), num_ops_, rnd_);
|
|
|
|
|
|
|
|
|
|
for (auto tensor_op = selected_tensor_ops.begin(); tensor_op != selected_tensor_ops.end(); ++tensor_op) {
|
|
|
|
|
bool first = true;
|
|
|
|
|
for (const auto &tensor_op : selected_tensor_ops) {
|
|
|
|
|
// Do NOT apply the op, if second random generator returned zero
|
|
|
|
|
if (std::uniform_int_distribution<int>(0, 1)(rnd_)) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// apply C++ ops (note: python OPs are not accepted)
|
|
|
|
|
if (count == 1) {
|
|
|
|
|
RETURN_IF_NOT_OK((**tensor_op).Compute(input, output));
|
|
|
|
|
} else if (count % 2 == 0) {
|
|
|
|
|
RETURN_IF_NOT_OK((**tensor_op).Compute(*output, even_out_ptr));
|
|
|
|
|
if (first) {
|
|
|
|
|
RETURN_IF_NOT_OK(tensor_op->Compute(input, output));
|
|
|
|
|
first = false;
|
|
|
|
|
} else {
|
|
|
|
|
RETURN_IF_NOT_OK((**tensor_op).Compute(even_out, output));
|
|
|
|
|
RETURN_IF_NOT_OK(tensor_op->Compute(std::move(*output), output));
|
|
|
|
|
}
|
|
|
|
|
count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// copy the result to output if it is not in output
|
|
|
|
|
if (count == 1) {
|
|
|
|
|
// The case where no tensor op is applied.
|
|
|
|
|
if (output->empty()) {
|
|
|
|
|
*output = input;
|
|
|
|
|
} else if ((count % 2 == 1)) {
|
|
|
|
|
(*output).swap(even_out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return Status::OK();
|
|
|
|
|