|
|
|
@ -127,7 +127,7 @@ cfg = {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def vgg16(num_classes=1000, args=None, phase="train"):
|
|
|
|
|
def vgg16(num_classes=1000, args=None, phase="train", **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Get Vgg16 neural network with batch normalization.
|
|
|
|
|
|
|
|
|
@ -140,11 +140,11 @@ def vgg16(num_classes=1000, args=None, phase="train"):
|
|
|
|
|
Cell, cell instance of Vgg16 neural network with batch normalization.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
>>> vgg16(num_classes=1000, args=args)
|
|
|
|
|
>>> vgg16(num_classes=1000, args=args, **kwargs)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if args is None:
|
|
|
|
|
from .config import cifar_cfg
|
|
|
|
|
args = cifar_cfg
|
|
|
|
|
net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase)
|
|
|
|
|
net = Vgg(cfg['16'], num_classes=num_classes, args=args, batch_norm=args.batch_norm, phase=phase, **kwargs)
|
|
|
|
|
return net
|
|
|
|
|