|
|
|
@ -27,7 +27,7 @@ kernel_size = 3
|
|
|
|
|
|
|
|
|
|
def test_check_conv2d_1():
|
|
|
|
|
m = nn.Conv2d(3, 64, 3, bias_init='zeros')
|
|
|
|
|
output = m.construct(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output_np = output.asnumpy()
|
|
|
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
|
|
|
@ -35,7 +35,7 @@ def test_check_conv2d_1():
|
|
|
|
|
def test_check_conv2d_2():
|
|
|
|
|
Tensor(np.ones([2, 2]))
|
|
|
|
|
m = nn.Conv2d(3, 64, 4, has_bias=False, weight_init='normal')
|
|
|
|
|
output = m.construct(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output_np = output.asnumpy()
|
|
|
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
|
|
|
@ -43,7 +43,7 @@ def test_check_conv2d_2():
|
|
|
|
|
def test_check_conv2d_3():
|
|
|
|
|
Tensor(np.ones([2, 2]))
|
|
|
|
|
m = nn.Conv2d(3, 64, (3, 3))
|
|
|
|
|
output = m.construct(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output_np = output.asnumpy()
|
|
|
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
|
|
|
@ -51,13 +51,13 @@ def test_check_conv2d_3():
|
|
|
|
|
def test_check_conv2d_4():
|
|
|
|
|
Tensor(np.ones([2, 2]))
|
|
|
|
|
m = nn.Conv2d(3, 64, (3, 3), stride=2, pad_mode='pad', padding=4)
|
|
|
|
|
output = m.construct(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output_np = output.asnumpy()
|
|
|
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_check_conv2d_bias():
|
|
|
|
|
m = nn.Conv2d(3, 64, 3, bias_init='zeros')
|
|
|
|
|
output = m.construct(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output = m(Tensor(np.ones([1, 3, 16, 50], dtype=np.float32)))
|
|
|
|
|
output_np = output.asnumpy()
|
|
|
|
|
assert isinstance(output_np[0][0][0][0], (np.float32, np.float64))
|
|
|
|
|