parent
db0868d745
commit
bd0b462691
@ -0,0 +1,28 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <cstdint>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/repeat_elements_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
RepeatElementsGpuKernel, half)
|
||||
|
||||
MS_REG_GPU_KERNEL_ONE(RepeatElements, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
RepeatElementsGpuKernel, int32_t)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,161 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/repeat_elements_impl.cuh"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class RepeatElementsGpuKernel : public GpuKernel {
|
||||
public:
|
||||
RepeatElementsGpuKernel() : rep_(1), axis_(0), input_size_(1), output_size_(0) {}
|
||||
~RepeatElementsGpuKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *input_device_address = GetDeviceAddress<T>(inputs, 0);
|
||||
T *output_device_address = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
switch (input_dim_) {
|
||||
case 1:
|
||||
CalRepeatElements1d(input_device_address, rep_, axis_, output_device_address, output_size_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
case 2:
|
||||
CalRepeatElements2d(input_device_address, input_shape_[1], rep_, axis_, output_device_address, output_shape_[1],
|
||||
output_size_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
case 3:
|
||||
CalRepeatElements3d(input_device_address, input_shape_[1], input_shape_[2], rep_, axis_, output_device_address,
|
||||
output_shape_[1], output_shape_[2], output_size_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
case 4:
|
||||
CalRepeatElements4d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], rep_, axis_,
|
||||
output_device_address, output_shape_[1], output_shape_[2], output_shape_[3], output_size_,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
case 5:
|
||||
CalRepeatElements5d(input_device_address, input_shape_[1], input_shape_[2], input_shape_[3], input_shape_[4],
|
||||
rep_, axis_, output_device_address, output_shape_[1], output_shape_[2], output_shape_[3],
|
||||
output_shape_[4], output_size_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
default:
|
||||
int *input_shape_device_address = GetDeviceAddress<int>(workspace, 0);
|
||||
int *output_shape_device_address = GetDeviceAddress<int>(workspace, 1);
|
||||
int *input_shape_cumulative_product_device_address = GetDeviceAddress<int>(workspace, 2);
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(input_shape_device_address, input_shape_.data(), workspace_size_list_[0],
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(output_shape_device_address, output_shape_.data(), workspace_size_list_[1],
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync output_shape failed");
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(input_shape_cumulative_product_device_address, input_shape_cumulative_product_.data(),
|
||||
workspace_size_list_[2], cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync input_shape_cumulative_product_device_address failed");
|
||||
|
||||
CalRepeatElements(input_device_address, input_dim_, input_shape_device_address,
|
||||
input_shape_cumulative_product_device_address, rep_, axis_, output_device_address,
|
||||
output_shape_device_address, output_size_, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_count != 1) {
|
||||
MS_LOG(EXCEPTION) << input_count << " arguments were provided, but RepeatElementGpuKernel expects 1.";
|
||||
}
|
||||
|
||||
std::vector<size_t> temp_input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_dim_ = temp_input_shape.size();
|
||||
for (size_t e : temp_input_shape) {
|
||||
input_size_ *= e;
|
||||
input_shape_.push_back(e);
|
||||
}
|
||||
|
||||
int cumulative_product = 1;
|
||||
for (size_t i = input_dim_ - 1; i > 0; i--) {
|
||||
cumulative_product *= input_shape_[i];
|
||||
input_shape_cumulative_product_.push_back(cumulative_product);
|
||||
}
|
||||
std::reverse(input_shape_cumulative_product_.begin(), input_shape_cumulative_product_.end());
|
||||
|
||||
axis_ = GetAttr<int>(kernel_node, "axis");
|
||||
if (axis_ < 0) {
|
||||
axis_ += input_dim_;
|
||||
}
|
||||
|
||||
rep_ = GetAttr<int>(kernel_node, "rep");
|
||||
output_size_ = input_size_ * rep_;
|
||||
output_shape_ = input_shape_;
|
||||
output_shape_[axis_] *= rep_;
|
||||
|
||||
InitSizeLists();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(output_size_ * sizeof(T));
|
||||
|
||||
// workspaces for input shape, output shape and cumulative sum
|
||||
workspace_size_list_.push_back(input_dim_ * sizeof(int));
|
||||
workspace_size_list_.push_back(input_dim_ * sizeof(int));
|
||||
workspace_size_list_.push_back((input_dim_ - 1) * sizeof(int));
|
||||
}
|
||||
|
||||
private:
|
||||
int rep_;
|
||||
int axis_;
|
||||
int input_dim_;
|
||||
std::vector<int> input_shape_;
|
||||
std::vector<int> input_shape_cumulative_product_;
|
||||
std::vector<int> output_shape_;
|
||||
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_REPEAT_ELEMENTS_GPU_KERNEL_H_
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,52 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#define REPEAT_ELEMENTS_MAX_INPUT_DIM 100
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements1d(
|
||||
const T *input, const int rep, const int axis, T *output, const int output_size, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements2d(const T *input, const int input_d1, const int rep, const int axis, T *output,
|
||||
const int output_d1, const int output_size, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements3d(const T *input, const int input_d1, const int input_d2, const int rep, const int axis,
|
||||
T *output, const int output_d1, const int output_d2, const int output_size,
|
||||
cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements4d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int rep,
|
||||
const int axis, T *output, const int output_d1, const int output_d2, const int output_d3,
|
||||
const int output_size, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements5d(const T *input, const int input_d1, const int input_d2, const int input_d3, const int input_d4,
|
||||
const int rep, const int axis, T *output, const int output_d1, const int output_d2,
|
||||
const int output_d3, const int output_d4, const int output_size, cudaStream_t cuda_stream);
|
||||
|
||||
template <typename T>
|
||||
void CalRepeatElements(const T *input, const int input_dim, const int* const input_shape,
|
||||
const int* const input_shape_cumulative_product, const int rep, const int axis, T *output,
|
||||
const int* const output_shape, const int output_size, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_REPEAT_ELEMENTS_H_
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue